Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytoplasm affects the number of vertebrae in carp-goldfish clones

21.02.2005


The March 2005 issue of Biology of Reproduction contains a report of some intriguing findings in cloned offspring created when nuclei from one genus of fish were transplanted to enucleated eggs of another genus of fish.



The seven offspring, cloned from nuclei of common carp and egg cytoplasm of goldfish, were virtually identical to the nuclear donor species, Cyprinus carpio, in appearance and in most physical traits. The number of vertebrae in the clones, however, was in the range of the recipient species, Carassius auratus.

Yong-Hua Sun, Shang-Ping Chen, Ya-Ping Wang, Wei Hu, and Zuo-Yan Zhu, who conducted this work at the Institute of Hydrobiology, Chinese Academy of Sciences, in Wuhan, China, conclude that the egg cytoplasm, and not the genetic code of the transplanted nucleus, influenced this aspect of the skeleton as the cloned fish developed.


They speculate that a so-called "segmentation clock" early in embryonic development is controlled by the egg cytoplasm. Thus the egg cytoplasm of the recipient goldfish directs segmentation of the body and hence the number of vertebrae. Common carp have 33 to 36 vertebrae in their backbones, while goldfish have 26 to 28. Six of the seven cloned fish had between 26 and 28 vertebrae; one had 31.

Although the initial rate of success in producing carp-goldfish clones is low--seven offspring in 501 attempts in this study--the authors believe that cross-species transplantation will lead to improved understanding of the contributions of the nucleus and egg cytoplasm to the growth and development of vertebrates.

Dr. Zuo-Yan Zhu | EurekAlert!
Further information:
http://www.ssr.org
http://www.ihb.ac.cn

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>