Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less Fat Makes Better Process For Designing New Drugs

08.12.2004


Biochemists at Ohio State University and their colleagues have overcome one of the major obstacles to drug design, by trimming some of the fat from a molecular sponge that scientists use to study proteins.

In the December issue of the journal Structure, the biochemists report using their method successfully in experiments with two common cellular proteins. The results suggest that scientists could one day use the method as a step in designing drugs for diseases such as cystic fibrosis, Alzheimer’s, and tuberculosis.

Proteins are part of the cell membranes of living organisms, and they are the gatekeepers that regulate what enters and leaves a cell, explained Martin Caffrey, professor of chemistry at Ohio State. To design a drug that will target a particular protein, scientists need to view the protein’s structure in detail, and that involves removing the protein from the cell membrane and forming it into a crystal that can be viewed using x-rays.



It’s not easy to form a pliable protein into a rigid crystal, and scientists are working to develop reliable tools to do the job. “Crystallizing proteins is considered an art. We want to turn it into a science,” Caffrey said. One promising tool is a slab of intertwined lipid and water molecules -- a kind of wet, fatty sponge that soaks up thousands of proteins at once and draws them together into crystals.

The sponge is full of watery pores that offer surface area for chemical reactions. One gram of the stuff has more surface area than a football field. The sponge method, called “cubic phase,” or “in meso,” crystallization, has been around since the 1990s. But because most proteins are difficult to crystallize, scientists have only been able to study a handful of proteins this way.

In Structure, Caffrey and his coauthors describe how they improved upon the method. They built a sponge out of smaller fat molecules than are normally used, creating larger pores and thinner membranes inside the sponge that gave the proteins more room, so they were more likely to bind together. In tests, the biochemists were able to form crystals of two common proteins, bacteriorhodopsin (bR) and BtuB, which is a carrier for vitamin B12.

The bR protein had been crystallized with the traditional “in meso” method before, and so it was a good benchmark for the test. But to the biochemists’ knowledge, this is the first time that a protein such as BtuB has been crystallized with the “in meso” method. They were able to crystallize BtuB using both the traditional, thicker sponge and the new, thinner sponge.

BtuB belongs to a class of proteins called beta-barrel proteins, which are made of sheets of protein rolled up into a cylinder. This particular shape of protein has defied crystallization with a molecular sponge before. Yet BtuB is of particular interest to scientists, because it is found in the outer cellular membrane of E. coli, a bacterium often used in laboratory research. “We were able to get the BtuB to crystallize with the traditional method, but it worked even better with the new method,” Caffrey said.

Right now, there are thousands of other important proteins that scientists can’t crystallize, Caffrey said. His modified sponge may work for some of them, too. The BtuB crystals made with the less fatty sponge were twice as large as BtuB crystals made with the thicker sponge -- 200 micrometers across, compared to 100 micrometers (about the width of a human hair). Larger crystals are easier to manipulate in the laboratory, Caffrey said, and they can be viewed with less expensive equipment than is required to view smaller crystals.

He and his colleagues will have to develop the method further before it can be used with a wide variety of proteins. For instance, some proteins may only crystallize at high or low temperatures. The current experiment worked at room temperature (20 degrees Celsius, or 68 degrees Fahrenheit) but not at temperatures closer to body temperature (40 degrees Celsius, or 104 degrees Fahrenheit).

The heat caused the fat molecules to kink up, which stifled the crystallization, Caffrey said. He suspects that scientists may be able to tailor the size of the fat molecules further to suit different proteins at different temperatures in the future.

Understanding protein structure is an important first step in designing protein-specific drugs. Should the new crystallization method prove versatile, it could help scientists develop new treatments for a wide variety of diseases, including Alzheimer’s, Parkinson’s, diabetes, cataracts, cystic fibrosis, and tuberculosis.

Caffrey’s Ohio State collaborators were David Hart, a professor of chemistry; Lisa Misquitta, and undergraduate student in biology; Yohann Misquitta, a doctoral student in biophysics; Vadim Cherezov, a research associate; Jakkam Mohan, a postdoctoral researcher; and Orla Slattery, a visiting scholar from the University of Limerick in Ireland. Other coauthors on the paper included William Cramer and Mariya Zhalnina, both of Purdue University.

The National Institutes of Health, the National Science Foundation, and Science Foundation Ireland funded this study.

Martin Caffrey | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>