Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Less Fat Makes Better Process For Designing New Drugs


Biochemists at Ohio State University and their colleagues have overcome one of the major obstacles to drug design, by trimming some of the fat from a molecular sponge that scientists use to study proteins.

In the December issue of the journal Structure, the biochemists report using their method successfully in experiments with two common cellular proteins. The results suggest that scientists could one day use the method as a step in designing drugs for diseases such as cystic fibrosis, Alzheimer’s, and tuberculosis.

Proteins are part of the cell membranes of living organisms, and they are the gatekeepers that regulate what enters and leaves a cell, explained Martin Caffrey, professor of chemistry at Ohio State. To design a drug that will target a particular protein, scientists need to view the protein’s structure in detail, and that involves removing the protein from the cell membrane and forming it into a crystal that can be viewed using x-rays.

It’s not easy to form a pliable protein into a rigid crystal, and scientists are working to develop reliable tools to do the job. “Crystallizing proteins is considered an art. We want to turn it into a science,” Caffrey said. One promising tool is a slab of intertwined lipid and water molecules -- a kind of wet, fatty sponge that soaks up thousands of proteins at once and draws them together into crystals.

The sponge is full of watery pores that offer surface area for chemical reactions. One gram of the stuff has more surface area than a football field. The sponge method, called “cubic phase,” or “in meso,” crystallization, has been around since the 1990s. But because most proteins are difficult to crystallize, scientists have only been able to study a handful of proteins this way.

In Structure, Caffrey and his coauthors describe how they improved upon the method. They built a sponge out of smaller fat molecules than are normally used, creating larger pores and thinner membranes inside the sponge that gave the proteins more room, so they were more likely to bind together. In tests, the biochemists were able to form crystals of two common proteins, bacteriorhodopsin (bR) and BtuB, which is a carrier for vitamin B12.

The bR protein had been crystallized with the traditional “in meso” method before, and so it was a good benchmark for the test. But to the biochemists’ knowledge, this is the first time that a protein such as BtuB has been crystallized with the “in meso” method. They were able to crystallize BtuB using both the traditional, thicker sponge and the new, thinner sponge.

BtuB belongs to a class of proteins called beta-barrel proteins, which are made of sheets of protein rolled up into a cylinder. This particular shape of protein has defied crystallization with a molecular sponge before. Yet BtuB is of particular interest to scientists, because it is found in the outer cellular membrane of E. coli, a bacterium often used in laboratory research. “We were able to get the BtuB to crystallize with the traditional method, but it worked even better with the new method,” Caffrey said.

Right now, there are thousands of other important proteins that scientists can’t crystallize, Caffrey said. His modified sponge may work for some of them, too. The BtuB crystals made with the less fatty sponge were twice as large as BtuB crystals made with the thicker sponge -- 200 micrometers across, compared to 100 micrometers (about the width of a human hair). Larger crystals are easier to manipulate in the laboratory, Caffrey said, and they can be viewed with less expensive equipment than is required to view smaller crystals.

He and his colleagues will have to develop the method further before it can be used with a wide variety of proteins. For instance, some proteins may only crystallize at high or low temperatures. The current experiment worked at room temperature (20 degrees Celsius, or 68 degrees Fahrenheit) but not at temperatures closer to body temperature (40 degrees Celsius, or 104 degrees Fahrenheit).

The heat caused the fat molecules to kink up, which stifled the crystallization, Caffrey said. He suspects that scientists may be able to tailor the size of the fat molecules further to suit different proteins at different temperatures in the future.

Understanding protein structure is an important first step in designing protein-specific drugs. Should the new crystallization method prove versatile, it could help scientists develop new treatments for a wide variety of diseases, including Alzheimer’s, Parkinson’s, diabetes, cataracts, cystic fibrosis, and tuberculosis.

Caffrey’s Ohio State collaborators were David Hart, a professor of chemistry; Lisa Misquitta, and undergraduate student in biology; Yohann Misquitta, a doctoral student in biophysics; Vadim Cherezov, a research associate; Jakkam Mohan, a postdoctoral researcher; and Orla Slattery, a visiting scholar from the University of Limerick in Ireland. Other coauthors on the paper included William Cramer and Mariya Zhalnina, both of Purdue University.

The National Institutes of Health, the National Science Foundation, and Science Foundation Ireland funded this study.

Martin Caffrey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>