Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical birds sensitive to environmental cues that can be impacted by global warming

12.11.2004


Research provides information on brain changes that affect breeding in birds



A bird’s song is music to our ears -- and to the ears of his potential mates -- and a warning to other males to stay out of his territory. To Ignacio Moore, assistant professor of biology at Virginia Tech, bird songs were a curiosity that made him want to find out why birds sang at some times and not at others, at some places and not elsewhere.

Moore and University of Washington, Seattle, researchers John C. Wingfield in biology and Eliot A. Brenowitz in psychology, looked at seasonal changes in the brains of birds that account for their singing, which is a part of the male mating behavior. In the Nov. 10 issue of The Journal of Neuroscience, the official journal of the Society for Neuroscience, they report that birds in high latitudes are driven to sing by seasonal changes in the length of the day, which causes changes in the song-control nuclei of the brain. However, in the tropics, where the day length does not vary much by season, the propensity for birds to sing still changes, but is driven by environmental cues that vary by locale -- a fact that could mean those birds are more susceptible to global warming than birds in higher latitudes.


Correct timing of breeding is necessary for reproductive success, Moore said. Research by others has shown that testosterone is the main physiological cue regulating seasonal changes in the neural song-control system. Seasonal changes in the song-control system have been demonstrated by other scientists in all northern latitude species that have been investigated. But no one had researched whether seasonal changes occurred in the brains of birds in tropical areas where day-length changes are minimal. "We think it’s probably still testosterone that causes tropical birds to sing, but that the environmental cue is different," Moore said. The scientists wanted to determine whether "seasonal changes in brain structure can be mediated by local environmental cues."

Moore and his colleagues looked at two populations of the rufous-collared sparrow only 25 km apart. The two populations are at the same latitude but are on the east and west slopes of the Andes, which have very different climate patterns. "At the time of year when birds in the Papallacta population were breeding (August to September), birds in Pintag were in nonbreeding state," the researchers wrote in The Journal of Neuroscience ("Plasticity of the Avian Song Control System in Response to Localized Environmental Cues in an Equatorial Songbird"). "Correspondingly, the song control nuclei were fully grown in the breeding Papallacta population when they were regressed in the nonbreeding Pintag population. Singing behavior also changed seasonally in both populations.

"Our observations of seasonal brain plasticity in these tropical birds demonstrate that the vertebrate brain is extremely flexible and sensitive to diverse environmental cues that can time seasonal reproductive physiology and behavior," they wrote. While it is not yet known what environmental cues signal breeding time, Moore hypothesizes that it could be rainfall, temperature, or food availability -- or all these cues.

Human beings are contributing to global warming, which affects factors such as temperature and rainfall, and thus food availability, but does not affect the seasonal day-length changes of higher latitudes. Therefore, Moore said, global warming could change the brain functions of tropical birds and cause problems with the timing of their mating seasons. "We’re not going to change day length," he said. "We can change weather patterns. Studies show changes in the timing of breeding and migration in birds." Global warming could be the reason, he said, and, if the brain is truly sensitive to environmental cues, the changes due to global warming could have "effects we haven’t thought of before."

While Moore’s research was driven primarily by curiosity and not by conservation concerns, "you can’t save things if you don’t understand them," he said. "Every little bit of knowledge about how things works is useful." They will next try to determine which specific environmental cues are affecting tropical-bird mating processes. Moore’s research is funded through fellowships and grants from the Society for Neuroscience and the National Science Foundation.

Sally Harris | EurekAlert!
Further information:
http://www.vt.edu
http://www.jneurosci.org/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>