Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling pathway may be key to understanding roots of hypertension

12.11.2004


Defeating high blood pressure may be a matter of a little molecular manipulation.



Some drugs for hypertension, such as so-called ACE inhibitors, block specific receptor proteins on the cell. But researchers at Jefferson Medical College instead have looked to a certain molecular pathway called the Gq signaling pathway, showing that it plays an important role in developing various models of hypertension. The work might lead to new insights into the roots of hypertension, and eventually, the scientists believe, novel therapies.

Andrea Eckhart, Ph.D., associate professor of medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia and her co-workers focused on drugs known as alpha-adrenergic receptor blockers and angiotensin II receptor blockers (including ACE inhibitors), which block angiotensin over-production, and which can lead to high blood pressure. Both of these receptors normally bind to a class of receptors called Gq, which ultimately leads to hypertension.


"We thought that if we could somehow block all of the receptors bound to this Gq coupled protein, then instead of hitting each receptor individually, we could knock them all out with a specific inhibitor," explains Dr. Eckhart, who presented her team’s results this week at the American Heart Association’s Scientific Sessions 2004 in New Orleans.

Dr. Eckhart, who is director of the Eugene Feiner Laboratory in the Center for Translational Medicine in the Department of Medicine at Jefferson Medical College, and her team subsequently developed a Gq inhibitor and tested it in various mouse models of hypertension. They looked at two particular receptor proteins called GRK2 and GRK5, which are both linked to high blood pressure in human and animal models. They overexpressed the genes for GRK2 and GRK5, causing hypertension in mice.

When they mated the GRK2 mouse with a mouse with a genetic inhibition of Gq, the resulting offspring had lower blood pressure. But when the researchers mated the GRK5 mouse with a mouse with a Gq inhibition, the offspring’s blood pressure didn’t change.

"This finding suggests that the overexpression of both proteins leads to different pathways causing high blood pressure," she says. According to Dr. Eckhart, finding the right kind of drug for patients is difficult without knowing the underlying causes of the high blood pressure. Because potential contributing factors can include obesity, genetics, and other lifestyle factors such as smoking and diet, patients often are taking several drugs at once.

"The Gq pathway is a good molecular tool that allows us to start looking in the laboratory at discerning different pathways underlying high blood pressure," she says. "It also might provide insights on developing potential therapeutic strategies especially relevant for individuals taking more than one drug at a time."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>