Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule that helps DNA replicate may make good target for cancer therapy

22.10.2004


In order to divide, cells must first replicate their chromosomes. Cells use an array of proteins to accomplish the job, including a large enzyme complex that synthesizes new strands of DNA. In a paper to be published Oct. 22 in the journal Molecular Cell, University of Minnesota researchers report that a particular protein, called minichromosome maintenance protein 10 (Mcm10), protects the enzyme from destruction and, like a molecular tugboat, escorts it to its "port"--the location on a chromosome where DNA replication will begin. Mcm10’s versatility implies that it is indispensable for cell division. Therefore, drugs that target Mcm10 could be effective in stopping the uncontrolled cell division seen in cancerous tumors.



The work grew out of a desire to learn the identity of the "tugboat," said Anja Bielinsky, an assistant professor of biochemistry, molecular biology and biophysics, in whose laboratory the work was performed. The first author on the paper is Robin Ricke, a graduate student. The two scientists worked with baker’s yeast, an organism often used to study basic biological mechanisms.

First, a little background on how DNA replicates itself: Before DNA replication can begin, the two strands in the DNA double helix must be unwound. Next, multiple molecules of a certain protein attach to the strands to keep them from spontaneously sticking together again. Only then can the star of the show--DNA polymerase alpha, the enzyme complex that synthesizes new DNA strands--be escorted to the specific sites on the DNA strands where it can attach and go to work.


"The big question was, How is polymerase alpha recruited to the first site?" said Bielinsky. "We found that Mcm10 brings the DNA polymerase alpha complex to the chromosomal sites where replication originates. It does this by attaching to the protein that keeps the two DNA strands from reconnecting. But what came as a complete surprise was that Mcm10 also stabilizes the polymerase alpha complex. In cells lacking Mcm10, the catalytic subunit of the complex--the part that attaches to DNA--was degraded so it could not attach." If the complex cannot attach to DNA, cell division is stopped cold.

The proteins that bring about DNA replication have been highly conserved during evolution; that is, the proteins are virtually identical whether the organism is yeast, an invertebrate or a human. Therefore, whatever is learned from yeast--which are much easier to work with than are human cells--is likely applicable to humans, Bielinsky said. Among the next steps for her lab is to find exactly how Mcm10 interacts with the polymerase alpha complex, because disrupting this interaction in a cancer cell might prevent it from multiplying. Also, the researchers want to know what it is in the cell that causes the degradation of the polymerase alpha complex when no Mcm10 is around to protect it. Bielinsky and her group are now beginning to work with chicken blood cells to confirm that Mcm10 works the same way in vertebrates as in yeast.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>