Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule that helps DNA replicate may make good target for cancer therapy

22.10.2004


In order to divide, cells must first replicate their chromosomes. Cells use an array of proteins to accomplish the job, including a large enzyme complex that synthesizes new strands of DNA. In a paper to be published Oct. 22 in the journal Molecular Cell, University of Minnesota researchers report that a particular protein, called minichromosome maintenance protein 10 (Mcm10), protects the enzyme from destruction and, like a molecular tugboat, escorts it to its "port"--the location on a chromosome where DNA replication will begin. Mcm10’s versatility implies that it is indispensable for cell division. Therefore, drugs that target Mcm10 could be effective in stopping the uncontrolled cell division seen in cancerous tumors.



The work grew out of a desire to learn the identity of the "tugboat," said Anja Bielinsky, an assistant professor of biochemistry, molecular biology and biophysics, in whose laboratory the work was performed. The first author on the paper is Robin Ricke, a graduate student. The two scientists worked with baker’s yeast, an organism often used to study basic biological mechanisms.

First, a little background on how DNA replicates itself: Before DNA replication can begin, the two strands in the DNA double helix must be unwound. Next, multiple molecules of a certain protein attach to the strands to keep them from spontaneously sticking together again. Only then can the star of the show--DNA polymerase alpha, the enzyme complex that synthesizes new DNA strands--be escorted to the specific sites on the DNA strands where it can attach and go to work.


"The big question was, How is polymerase alpha recruited to the first site?" said Bielinsky. "We found that Mcm10 brings the DNA polymerase alpha complex to the chromosomal sites where replication originates. It does this by attaching to the protein that keeps the two DNA strands from reconnecting. But what came as a complete surprise was that Mcm10 also stabilizes the polymerase alpha complex. In cells lacking Mcm10, the catalytic subunit of the complex--the part that attaches to DNA--was degraded so it could not attach." If the complex cannot attach to DNA, cell division is stopped cold.

The proteins that bring about DNA replication have been highly conserved during evolution; that is, the proteins are virtually identical whether the organism is yeast, an invertebrate or a human. Therefore, whatever is learned from yeast--which are much easier to work with than are human cells--is likely applicable to humans, Bielinsky said. Among the next steps for her lab is to find exactly how Mcm10 interacts with the polymerase alpha complex, because disrupting this interaction in a cancer cell might prevent it from multiplying. Also, the researchers want to know what it is in the cell that causes the degradation of the polymerase alpha complex when no Mcm10 is around to protect it. Bielinsky and her group are now beginning to work with chicken blood cells to confirm that Mcm10 works the same way in vertebrates as in yeast.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>