Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic data crunching achieves milestone at Stanford

21.10.2004


The revolution was not televised.



In the fall of 1999, the Stanford Microarray Database booted up, and a level of computing power was suddenly available to the field of molecular biology that only a few years earlier was inconceivable. On Oct. 19, the database recorded its 50,000th experiment, marking its place at the forefront of an information processing revolution that has yielded groundbreaking insights into the relationships between genes and illness, as well as fundamental biological discoveries.

Microarrays, developed in the lab of biochemistry professor Patrick Brown, MD, PhD, in the early 1990s, took molecular biology by storm. They’re small slides spotted with fixed samples of DNA, each for a different gene. When a researcher prepares a labeled cell extract and incubates it with the slide, messengers in the sample stick to the fixed DNA, showing which genes in the sample are active. Microarrays are especially useful for comparisons between normal and cancerous tissues or between different stages of development. Researchers use them to nose out the genes associated with such changes.


The problem, however, is that experiments with microarrays yield vast amounts of data. "Microarrays allow researchers to do in six months what previously would have taken six years of concerted effort," explained Gavin Sherlock, PhD, assistant research professor in genetics, who has been involved in the Stanford database from the beginning.

The need for the university database became apparent in the late 1990s after Brown and David Botstein, PhD, former chair of the genetics department, had put together a database for their own microarray results. They soon found that they needed something more sophisticated. Efficient processing and storing of microarray data, as well as the ability to easily retrieve and compare data with other experiments were all required. New information about genes spotted on the slides is continuously discovered and needs to be incorporated into data from previous experiments. In late 1999 Botstein and Brown received a grant from the National Cancer Institute for a completely revamped database, and by April 2000 all 5,000 experiments from the old database had been transferred to the new database, officially known as the Stanford Microarray Database.

Since then, researchers have used data in the database to illuminate everything from cell division in yeast to cancer-causing genes to what happens to bacteria when they’re deprived of iron. Microarray data have also allowed scientists to understand how various drugs affect the malaria bug, to find out what the immune system attacks in patients with autoimmune diseases and to pinpoint genes involved in multiple sclerosis.

Sherlock estimates the database now supports 400 campus researchers doing work on 30 different organisms (more are added as needed), and he believes it to be the world’s largest academic microarray database. About 200 papers have been published by Stanford researchers based on its data and many more by other groups reanalyzing Stanford data.

About one-quarter to one-third of all publicly available microarray data in the world is in the Stanford system, Sherlock said. Most of the database’s experiments are not yet public; results are available only to Stanford researchers and their collaborators until an article using the data is published in a journal. It is growing at a rapid pace, with nearly 1,000 experiments being added to the database every month.

Statistics like these - combined with Stanford’s invention of the microarray and the nine-person team devoted to maintaining the database - make Stanford a natural leader in the field. Several years ago the team made the database’s source code publicly available, and Catherine Ball, PhD, the director of the Stanford Microarray Database, serves as president of the Microarray Gene Expression Database Society, an international group working to implement standards for such work with microarrays.

"It’s much less scary to be doing microarrays at Stanford than anywhere else," Ball said. "In fact, if you’re not, you have to explain why." It’s not only a result of Stanford’s long history with microarrays, she said. "Anyone on campus was able to walk in and ask a postdoc in the Brown-Botstein lab, ’Can you please help me get this started in my lab?’" she explained. "Just having a team with expertise, enthusiasm and a cooperative nature has made this university much more likely to use microarray technology than anyplace else."

M.A. Malone | EurekAlert!
Further information:
http://www.stanford.edu.

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>