Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bovine genome sequence available Bovine genome sequence available

06.10.2004


The first draft of the bovine genome sequence is now freely available to biomedical and agricultural researchers around the world.



CSIRO Livestock Industries is a partner in the U.S. $53 million dollar international effort to sequence the genome of the cow (Bos taurus).

"CSIRO has invested in the research to increase understanding and utilisation of the bovine genome which is a major focus for our livestock portfolio development both now and into the future," CSIRO Livestock Industries’ Chief, Shaun Coffey, says. "The bovine genome physical map and sequence will assist scientists to develop tools to advance selection of desirable production traits, identify genes involved in pest and disease resistance and enable better matching of products to market specifications." The bovine genome is similar in size to the genomes of humans and other mammals, containing approximately three billion DNA base pairs.


The sequencing of the bovine genome will also help medical researchers learn more about the human genome and thereby develop better ways of treating and preventing disease.

Researchers are currently comparing the draft version of the bovine genome sequence with those of the human and other organisms that have already been sequenced. The results of these analyses will be published on public databases in the next several months.

Sequencing and assembly of the bovine genome began in December 2003, led by Richard Gibbs and George Weinstock at the Baylor College of Medicine’s Human Genome Sequencing Center in Houston, Texas.

The Hereford, a cattle breed well known for its beef production capabilities was selected for the bulk of the sequencing project. Holstein, Angus, Jersey, Limousin, Norwegian Red and Brahman cattle breeds will be also sequenced at a ’lighter’ coverage.

The Bovine Genome Sequencing Project, due for completion in 2005, will allow detailed tracking of the DNA differences between these breeds to assist discovery of traits for better meat and milk production and to model human disease.

The initial assembly is based on 3.3-fold coverage of the bovine genome and by 2005, a 6-fold sequence coverage will be achieved. Researchers can access the sequence data through the following public databases: GenBank (www.ncbi.nih.gov/Genbank) at NIH’s National Center for Biotechnology Information (NCBI); EMBL Bank (www.ebi.ac.uk/embl/index.html) at the European Molecular Biology Laboratory’s Nucleotide Sequence Database; and the DNA Data Bank of Japan (www.ddbj.nig.ac.jp). The data can also be viewed through NCBI’s Map Viewer (www.ncbi.nlm.nih.gov/mapview/), UCSC Genome Browser (www.genome.ucsc.edu/) at the University of California at Santa Cruz and the Ensembl Genome Browser (www.ensembl.org) at the Wellcome Trust Sanger Institute in Cambridge, England.

Veronic a Toohey | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>