Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence builds for potential new cancer drug target

28.09.2004


In a paper published today in the Proceedings of the National Academy of Sciences, Temple University researchers report that one of the functions of the c-myb gene, which leukemia cells depend on for proliferation, is the formation of white blood cells.



"This study is another step in the process of validating the c-myb gene as a potential target for new cancer drugs," said Prem Reddy, Ph.D., professor and director of the Fels Institute for Cancer Research and Molecular Biology at Temple University School of Medicine.

Knowing that the c-myb gene played a role in the spread of leukemia, the researchers wanted to determine the gene’s normal function. This was accomplished by deleting the c-myb gene in a mouse model. New technology allowed the scientists to delete c-myb from one specific type of tissue in the model rather than from the entire organism. "We removed the c-myb gene from T cells and in the process discovered that c-myb is required for white blood cell formation," said Reddy. In other research conducted by the team but not yet published, c-myb was deleted from breast tissue. The researchers believe that this gene plays a critical role in breast cancer and want to show the effects of its deletion on breast tumor cell proliferation.


The group’s research is providing detailed genetic explanations of how and why c-myb is essential for the proliferation of white blood cells and breast cells by demonstrating that when it’s removed, cell proliferation is impaired and the risk of developing cancer is reduced. "We hope to develop a drug that blocks the harmful activity of this gene in the near future. This finding was very serendipitous. We used to think c-myb was only associated with the development of leukemia but found that it’s also involved in the development of breast cancer," said Reddy.

Other researchers on the team include the study’s first author, Yen K. Lieu, Atul Kumar, Anthony G. Pajerowski, and Thomas J. Rogers.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>