Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence builds for potential new cancer drug target

28.09.2004


In a paper published today in the Proceedings of the National Academy of Sciences, Temple University researchers report that one of the functions of the c-myb gene, which leukemia cells depend on for proliferation, is the formation of white blood cells.



"This study is another step in the process of validating the c-myb gene as a potential target for new cancer drugs," said Prem Reddy, Ph.D., professor and director of the Fels Institute for Cancer Research and Molecular Biology at Temple University School of Medicine.

Knowing that the c-myb gene played a role in the spread of leukemia, the researchers wanted to determine the gene’s normal function. This was accomplished by deleting the c-myb gene in a mouse model. New technology allowed the scientists to delete c-myb from one specific type of tissue in the model rather than from the entire organism. "We removed the c-myb gene from T cells and in the process discovered that c-myb is required for white blood cell formation," said Reddy. In other research conducted by the team but not yet published, c-myb was deleted from breast tissue. The researchers believe that this gene plays a critical role in breast cancer and want to show the effects of its deletion on breast tumor cell proliferation.


The group’s research is providing detailed genetic explanations of how and why c-myb is essential for the proliferation of white blood cells and breast cells by demonstrating that when it’s removed, cell proliferation is impaired and the risk of developing cancer is reduced. "We hope to develop a drug that blocks the harmful activity of this gene in the near future. This finding was very serendipitous. We used to think c-myb was only associated with the development of leukemia but found that it’s also involved in the development of breast cancer," said Reddy.

Other researchers on the team include the study’s first author, Yen K. Lieu, Atul Kumar, Anthony G. Pajerowski, and Thomas J. Rogers.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>