Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ritual Attracts Biologists Seeking Genomic Clues to Coral Bleaching

25.08.2004


The one-night-a-year spawning of massive star corals (Montastraea species) off of the Florida coast generates millions of infant corals, each of which has the potential to help replenish coral reefs that have undergone significant environmental damage in recent years.



Even so, the chance that these bundles of eggs and sperm released in early September will result in healthy new individuals capable of replenishing reefs depends on many factors, most importantly the establishment of symbiosis between corals and the algal symbionts that live in, and nourish, them.

That’s why Mary Alice Coffroth, Ph.D., associate professor of biological sciences in the University at Buffalo’s College of Arts and Sciences, and her technician, Cynthia Lewis, will travel in early September to the Florida Keys, where a team of scientists will be night-diving right alongside the millions of teeming egg-sperm bundles released from corals off of the coast of Key Largo.


They will be obtaining samples as part of the first effort to use genomic methods to discover how symbiosis is established in hard corals. "Little is known about the molecular basis for establishing and maintaining these common biological relationships, which play a key role in the formation of coral reefs," said Coffroth.

Corals survive and thrive, Coffroth explained, because of the symbiotic relationship they develop with the single-celled algae called zooxanthellae (zo-zan-thel-y) that live inside them and help supply them with food.

Coral bleaching, a loss of these algal symbionts, can result from environmental changes, such as elevated levels of sunlight and elevated seawater temperatures that interfere with these relationships, reducing algal densities in corals. "Ultimately, we want to understand why the symbiosis breaks down, causing corals to bleach," said Coffroth, who is working with other biologists and genome scientists from the University of North

Carolina at Wilmington, the U.S. Department of Energy’s Joint Genome Institute in Walnut Creek, Calif., and the California Academy of Sciences. The idea behind the team’s research is to try to understand the mechanisms that determine how symbiosis is established by identifying candidate genes that control recognition between the corals and their algal symbionts. "I want to know, ’Do these corals take up just one type of algal symbiont or many?’ and ’Is the final selection genetically or environmentally determined?’" said Coffroth. "Is it that a particular algae turns on specific genes in the coral and others don’t?"

Coffroth and her colleagues will be collecting thousands of egg-sperm bundles, fertilizing them in a laboratory at UB and rearing them as developing embryos. To identify genes that are involved in the establishment of the symbiosis, they will sample the developing larvae with and without algal symbionts over time.

The zooxanthellae used to establish these symbioses were isolated by Coffroth and are part of an extensive culture collection maintained in Coffroth’s lab. "We are very lucky to have the facilities in the Department of Biological Sciences at UB to house this collection," said Coffroth. "It is one of the largest of its kind in the world."

Most of the samples will be sent to the Joint Genome Institute in California, where genomics scientists will screen them to identify genes that are being expressed during the establishment of the symbiosis.

Some of the newly settled coral larvae will be placed back on the reef where the establishment of the symbiosis and survival of these new recruits will be monitored over time. "A better understanding of host-symbiont relationships in coral-reef ecosystems can have implications for atmospheric and ocean sciences, conservation biology and the study and diagnosis of microbial diseases in corals," said Coffroth.

| newswise
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>