Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ritual Attracts Biologists Seeking Genomic Clues to Coral Bleaching

25.08.2004


The one-night-a-year spawning of massive star corals (Montastraea species) off of the Florida coast generates millions of infant corals, each of which has the potential to help replenish coral reefs that have undergone significant environmental damage in recent years.



Even so, the chance that these bundles of eggs and sperm released in early September will result in healthy new individuals capable of replenishing reefs depends on many factors, most importantly the establishment of symbiosis between corals and the algal symbionts that live in, and nourish, them.

That’s why Mary Alice Coffroth, Ph.D., associate professor of biological sciences in the University at Buffalo’s College of Arts and Sciences, and her technician, Cynthia Lewis, will travel in early September to the Florida Keys, where a team of scientists will be night-diving right alongside the millions of teeming egg-sperm bundles released from corals off of the coast of Key Largo.


They will be obtaining samples as part of the first effort to use genomic methods to discover how symbiosis is established in hard corals. "Little is known about the molecular basis for establishing and maintaining these common biological relationships, which play a key role in the formation of coral reefs," said Coffroth.

Corals survive and thrive, Coffroth explained, because of the symbiotic relationship they develop with the single-celled algae called zooxanthellae (zo-zan-thel-y) that live inside them and help supply them with food.

Coral bleaching, a loss of these algal symbionts, can result from environmental changes, such as elevated levels of sunlight and elevated seawater temperatures that interfere with these relationships, reducing algal densities in corals. "Ultimately, we want to understand why the symbiosis breaks down, causing corals to bleach," said Coffroth, who is working with other biologists and genome scientists from the University of North

Carolina at Wilmington, the U.S. Department of Energy’s Joint Genome Institute in Walnut Creek, Calif., and the California Academy of Sciences. The idea behind the team’s research is to try to understand the mechanisms that determine how symbiosis is established by identifying candidate genes that control recognition between the corals and their algal symbionts. "I want to know, ’Do these corals take up just one type of algal symbiont or many?’ and ’Is the final selection genetically or environmentally determined?’" said Coffroth. "Is it that a particular algae turns on specific genes in the coral and others don’t?"

Coffroth and her colleagues will be collecting thousands of egg-sperm bundles, fertilizing them in a laboratory at UB and rearing them as developing embryos. To identify genes that are involved in the establishment of the symbiosis, they will sample the developing larvae with and without algal symbionts over time.

The zooxanthellae used to establish these symbioses were isolated by Coffroth and are part of an extensive culture collection maintained in Coffroth’s lab. "We are very lucky to have the facilities in the Department of Biological Sciences at UB to house this collection," said Coffroth. "It is one of the largest of its kind in the world."

Most of the samples will be sent to the Joint Genome Institute in California, where genomics scientists will screen them to identify genes that are being expressed during the establishment of the symbiosis.

Some of the newly settled coral larvae will be placed back on the reef where the establishment of the symbiosis and survival of these new recruits will be monitored over time. "A better understanding of host-symbiont relationships in coral-reef ecosystems can have implications for atmospheric and ocean sciences, conservation biology and the study and diagnosis of microbial diseases in corals," said Coffroth.

| newswise
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>