Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly designed nanoparticle quantum dots simultaneously target and image prostate tumors in mice

28.07.2004


Emory University scientists have for the first time used a new class of luminescent "quantum dot" nanoparticles in living animals to simultaneously target and image cancerous tumors. The quantum dots were encapsulated in a highly protective polymer coating and attached to a monoclonal antibody that guided them to prostate tumor sites in living mice, where they were visible using a simple mercury lamp. The scientists believe the ability to both target and image cells in vivo represents a significant step in the quest to eventually use nanotechnology to target, image, and treat cancer, cardiovascular plaques, and neurodegenerative disease in humans. The findings were published on-line July 18 in the journal Nature Biotechnology and will appear in the journal’s August 1 print edition.



The research team was led by Shuming Nie, PhD, a nanotechnology expert and a professor in the Coulter Department of Biomedical Engineering at Emory and the Georgia Institute of Technology and in Emory’s Winship Cancer Institute, and by Lelund Chung, PhD, professor of urology in Emory University School of Medicine and the Winship Cancer Institute. Quantum dots are nanometer-sized luminescent semiconductor crystals that have unique chemical and physical properties due to their size and their highly compact structure. Quantum dots can be chemically linked (conjugated) to molecules such as antibodies, peptides, proteins or DNA and engineered to detect other molecules, such as those present on the surface of cancer cells.

The researchers injected human prostate cancer cells under the skin of mice to promote growth of solid prostate tumors. They then encapsulated quantum dots, made from cadmium selenide, within a highly protective coating called an ABC triblock copolymer, and over-coated the particle-polymer composite with poly (ethylene glycol). They injected the quantum dots into the circulatory system of the mice first to test "passive" targeting of the tumor. Tumors grow extra blood vessels in a process called angiogenesis. These angiogenic vessels are very porous, which allowed the quantum dots to leak out and accumulate at the tumor sites, where they could be detected by fluorescence imaging.


The scientists then conjugated the quantum dots to a highly specific monoclonal antibody targeted to a prostate-specific membrane antigen (PMSA) on the cell surface of the prostate tumor cells. When they injected the conjugated quantum dots into the circulatory system of the mice, the dots selectively accumulated at the site of the tumor through binding to the antigen target. The new triblock polymer coating protected the quantum dots from attack by enzymes and other biomolecules. The active method of tumor targeting using the monoclonal antibody was much faster and more efficient than was the passive method without the antibody.

"Although other research groups have used quantum dots to either target or image cells, we believe this is the first time in vivo targeting and imaging has been achieved simultaneously," said Xiaohu Gao, PhD a postdoctoral fellow in Dr. Nie’s group.

In previous studies without using the ABC triblock polymer, Emory scientists and other researchers experienced a significant loss of fluorescence in quantum dots that were administered to live animals. "This polymer appears to lend a great deal of protection and stability to the quantum dot probes inside the animals," Dr. Gao said. "Also, cadmium and selenium ions are highly toxic, and this polymer acts like a plastic bag to protect the quantum dots from degradation and leakage."

"This is a new class of quantum dot conjugates designed specifically for complex in vivo applications," said Dr. Nie. "They are stable over a broad range of pH and salt conditions and maintain their stability even after treatment with hydrochloric acid."

Quantum dots are more brightly fluorescent than traditional dyes and fluorescent proteins often used for imaging, and because they emit different wavelengths over a broad range of the light spectrum from visible to infrared, depending on their size and chemical composition, it is possible to "tune" them to tag and detect multiple biomarkers simultaneously. They can be illuminated by a light source, such as a laser or mercury lamp. Different sized quantum dots can be combined to detect multiple targets in a process called "multiplexing." And quantum dots are more resistant to photobleaching or fading than are conventional dyes used in imaging.

"It has been a difficult task to achieve both targeting and imaging in living animal models," Dr. Nie said. "The larger surface area provided by quantum dots should allow the conjugation of multiple agents, and we envision the development of diagnostic and therapeutic dual-modality quantum dots."

"We believe the unique properties of quantum dots will eventually allow us to use multiple colors and intensities to monitor multiple parameters at the same time for precise diagnosis and targeted treatment," Dr. Gao said. "We are developing quantum dots in the near-infrared spectrum, which should improve our ability for non-invasive and more sensitive imaging of deeper tissues."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>