Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One taste of growth protein and nerve cells want more

26.07.2004


Johns Hopkins researchers report that once a growing nerve "tastes" a certain protein, it loses its "appetite" for other proteins and follows the tasty crumbs to reach its final destination. The finding in mice, reported in the July 23 issue of Cell, appears to help explain how nerves connect to their targets and stop growing once there, a process important for the normal development of mouse and man.



During prenatal development, a nerve connects to its proper targets in part by obeying protein signals sampled en route. If the signals aren’t right or aren’t found, the growing nerve can connect to the wrong organ or not connect at all.

In experiments on mice, the Hopkins scientists learned that a protein called NT-3 (neurotrophin-3), produced and distributed at the halfway point, and one called NGF (nerve growth factor), which is expressed at the target organ, both attract the growing ends of a certain type of nerve cell. However, the Hopkins team found that only NGF can convince the nerve that it "tastes better," an ability that allows the nerve to leave the halfway point, grow to the source of NGF and then stay put.


"It seems incredible that a nerve finds its target this way during development, but we have a new glimpse into exactly how it happens," says David Ginty, Ph.D., associate professor in the Department of Neuroscience of Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "We have found that the growth of some nerves is controlled by target-derived cues, which are proteins that chemically change the nerves so that they are enticed to leave intermediate targets for final targets."

Scientists have long known that mammals, including mice and humans, normally grow more nerve cells than are needed during development, and that those that don’t successfully connect die off. Nerve cells have a long way to travel, and they are attracted to a number of intermediate sites along the way. But scientists haven’t understood exactly how the nerve endings move on.

Using mice engineered to lack either NT-3 or NGF, the Hopkins scientists, led by postdoctoral fellow Rejji Kuruvilla, Ph.D., and graduate students Larry Zweifel and Natalia Glebova, examined the nerve connections to a number of internal organs, including the heart, small intestine, salivary glands and fat deposits.

In mice without NT-3, nerves failed to grow to intermediate targets. In contrast, nerves in mice lacking NGF stayed at the intermediate site; they failed to grow into the final targets. Therefore, it appears the nerves need to first taste NT-3 and then NGF to properly connect to their targets, the researchers say.

To discover why nerves prefer NGF even when they can taste NT-3, the scientists compared nerve growth in the genetically engineered mice to growth in normal mice. Through these experiments, the researchers discovered that after they taste NT-3 and follow it to the intermediate site, growing nerves detect and "swallow" a small amount of NGF, wafted from the final target.

The key to the nerves’ preference, however, is what happens next. The NGF then is transported to the nerve cell’s command center, where it causes production of another protein. This protein, p75, moves back to the nerve’s growing tip and makes it impossible for NT-3 to act. Now less sensitive to NT-3, the nerve’s tip snakes through clouds of increasing amounts of NGF toward the organ producing the NGF. Once there, it stops.

"We were pleasantly surprised to discover that the ultimate target expresses a protein that physically changes the approaching nerve cell and makes other growth protein ’competitors’ seem less appealing," says Ginty. "We suspect that other nerve cells may be manipulated in a similar fashion by a different series of proteins. We’ll be studying that next."

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>