Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One taste of growth protein and nerve cells want more

26.07.2004


Johns Hopkins researchers report that once a growing nerve "tastes" a certain protein, it loses its "appetite" for other proteins and follows the tasty crumbs to reach its final destination. The finding in mice, reported in the July 23 issue of Cell, appears to help explain how nerves connect to their targets and stop growing once there, a process important for the normal development of mouse and man.



During prenatal development, a nerve connects to its proper targets in part by obeying protein signals sampled en route. If the signals aren’t right or aren’t found, the growing nerve can connect to the wrong organ or not connect at all.

In experiments on mice, the Hopkins scientists learned that a protein called NT-3 (neurotrophin-3), produced and distributed at the halfway point, and one called NGF (nerve growth factor), which is expressed at the target organ, both attract the growing ends of a certain type of nerve cell. However, the Hopkins team found that only NGF can convince the nerve that it "tastes better," an ability that allows the nerve to leave the halfway point, grow to the source of NGF and then stay put.


"It seems incredible that a nerve finds its target this way during development, but we have a new glimpse into exactly how it happens," says David Ginty, Ph.D., associate professor in the Department of Neuroscience of Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "We have found that the growth of some nerves is controlled by target-derived cues, which are proteins that chemically change the nerves so that they are enticed to leave intermediate targets for final targets."

Scientists have long known that mammals, including mice and humans, normally grow more nerve cells than are needed during development, and that those that don’t successfully connect die off. Nerve cells have a long way to travel, and they are attracted to a number of intermediate sites along the way. But scientists haven’t understood exactly how the nerve endings move on.

Using mice engineered to lack either NT-3 or NGF, the Hopkins scientists, led by postdoctoral fellow Rejji Kuruvilla, Ph.D., and graduate students Larry Zweifel and Natalia Glebova, examined the nerve connections to a number of internal organs, including the heart, small intestine, salivary glands and fat deposits.

In mice without NT-3, nerves failed to grow to intermediate targets. In contrast, nerves in mice lacking NGF stayed at the intermediate site; they failed to grow into the final targets. Therefore, it appears the nerves need to first taste NT-3 and then NGF to properly connect to their targets, the researchers say.

To discover why nerves prefer NGF even when they can taste NT-3, the scientists compared nerve growth in the genetically engineered mice to growth in normal mice. Through these experiments, the researchers discovered that after they taste NT-3 and follow it to the intermediate site, growing nerves detect and "swallow" a small amount of NGF, wafted from the final target.

The key to the nerves’ preference, however, is what happens next. The NGF then is transported to the nerve cell’s command center, where it causes production of another protein. This protein, p75, moves back to the nerve’s growing tip and makes it impossible for NT-3 to act. Now less sensitive to NT-3, the nerve’s tip snakes through clouds of increasing amounts of NGF toward the organ producing the NGF. Once there, it stops.

"We were pleasantly surprised to discover that the ultimate target expresses a protein that physically changes the approaching nerve cell and makes other growth protein ’competitors’ seem less appealing," says Ginty. "We suspect that other nerve cells may be manipulated in a similar fashion by a different series of proteins. We’ll be studying that next."

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>