Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemoradioimmunotherapy for advanced breast cancer: hope for the future?

06.07.2004


A successful, and novel, technique to kill metastatic breast cancer cells by circumventing their chemo- and radioresistant mechanisms was by presented by Dr John Giannios, Head of Radiotherapeutic Cancer Research at the IASO Hospital, Athens, Greece at the 18th Meeting of the European Association for Cancer Research today (Tuesday 6 July 2004).



Advanced breast cancer, with metastases to lung and bone, has a very poor prognosis and current treatment protocols for this stage of disease generally result in survival periods of less than two years. One of the reasons for this poor prognosis is that metastatic cancer cells are less responsive to treatment than primary tumour cells. This is partly caused by the fact that the normal cell death process (apoptosis) is repressed by the overexpression of oncogenes such as bcl-2, HER-2, Raf-1 and cdc25c (these oncogenes are expressed more strongly in metastatic tumour cells), which means that the cells fail to die following treatment with chemotherapy drugs and radiation therapy.

Using metastatic tumour tissue taken from a patient with advanced breast cancer, Dr Giannios’s team analysed the cells to determine if known oncogenes were being overexpressed. In addition to finding overexpression of the oncogenes bcl-2, HER-2, Raf-1 and cdc25c they also detected overexpression of DNMT1 (a DNA methyltransferase, involved in DNA replication during cell division, and implicated in cancer development) and they also detected methylation of BRCA1 promoter (a process implicated specifically in the development of breast cancer tumours).


The experimental treatment, termed ‘chemoradioimmunotherapy’, combined chemotherapy, radiation therapy and immunotherapy in one. The chemotherapy component consisted of vinorelbine-tartrate (a cytotoxic drug used in the treatment of breast (and other) cancers), the radiotherapy component was provided through the addition of high energy radioisotopes, whilst the immunotherapy aspect was achieved by attaching an antibody specific to HER-2 to those radioisotopes, as well as through the inclusion of a separate 21-nucleotide double stranded siRNA (‘small interfering RNA’) generated against DNMT1.

It was hoped that the novel treatment regime would effectively target the tumour cells by blocking the genetic mechanisms that protect the cells from conventional treatment thereby allowing the chemotherapy and radiation therapy components to exert their cytotoxic effects.

By 24 hours post-treatment there was clear evidence that the treated tumour cells were undergoing significantly greater apoptosis than the untreated controls. Apoptosis was confirmed by the detection of activation of caspase-3-9 (an enzyme involved in apoptosis), inhibition of DNA synthesis and metabolic activity in the tumour cells and the formation of apoptotic bodies. These apoptotic bodies were seen to be phagocytosed (absorbed) by adjacent tumour cells, which resulted in the subsequent apoptosis of the tumour cells through a ‘bystander’ killing effect.

Several diagnostic tests were employed to determine the molecular basis for the observed success of the chemoradioimmunotherapy treatment. The tests proved that the novel regimen had specifically impacted on the identified oncogenes that are essential to the propagation and perpetuation of the tumour cells. Evidence was found to show 1) there was clear downregulation of HER-2 as a consequence of the action of antiHER-2 scFv antibody; 2) there was re-expression of the tumour suppressor gene BRCA1 as a consequence of the inhibition of the DNMT1 mRNA and; 3) the radioisotopes had induced DNA double strand breaks in the tumour cells. The combination of these molecular actions was responsible for circumvention of chemo- and radioresistant mechanisms in the tumour cells, allowing them to be effectively targeted and damaged by the chemotherapy and radiation therapy components leading to induction of apoptosis.

According to Dr Giannios, “This technique will be very applicable in a clinical setting where treatment difficulties will be limited because, as a tailored and targeted anti-cancer treatment, the treatment will reduce systemic toxicity whilst enhancing the therapeutic index.” “Introducing the radiation by linking the radioisotopes to the anti-HER-2 antibody is more efficient than conventional external beam radiotherapy because the radiation is targeted specifically to those breast cancer cells that over-express HER-2/neu, leaving normal cells unaffected and thereby reducing system toxicity”, he added.

“These results open the possibility of combining targeted immunotherapy with chemotherapy and radiation therapy to successfully kill metastatic tumour cells”, said Dr Giannios. “Theoretically this novel technique should be as effective in other types of cancer that are characterised by hypermethylation of tumour suppressor genes and the overexpression of oncogenes such as HER-2 and bcl-2”. “Our next step will be to develop the treatment in patients, and on a bigger scale, in a Phase I clinical trial”.

Bell Stuart | alfa
Further information:
http://www.fecs.be

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>