Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JGI Decodes Wood & Toxic Waste-Degrading Fungus Genome

04.05.2004


The United States Department of Energy (DOE) Joint Genome Institute (JGI) announces today the publication of a high-quality draft genome sequence of the white rot fungus, Phanerochaete chrysosporium. These are the only known microbes capable of efficiently degrading the recalcitrant aromatic plant polymer lignin, one of the most abundant natural materials on earth. White rot fungi such as Phanerochaete chrysosporium play a pivotal role in the carbon cycle--the circulation of carbon from the atmosphere into organisms and back again. They also have demonstrated the ability to remediate explosive contaminants, pesticides and toxic waste with similar chemical structures to lignin. The sequence findings are summarized in the May 2nd on-line edition of the journal Nature Biotechnology.



"Phanerochaete chrysosporium is the first basidiomycete fungus to be sequenced, providing a glimpse into the genetic diversity of fungi," says Dan Rokhsar, head of the JGI Computational Genomics Department. "It’s the first of a trio of fungal genomes we’ll be tackling that have their own unique constellation of degradative enzymes. The availability of these genomes will spur industrial and bioremediative uses for these organisms."

Basidiomycetes are represented by important agricultural species including the familiar edible white button mushroom, Agaricus bisporus, and such plant pathogens as smuts and rusts. They also comprise certain opportunistic human pathogens that can be problematic especially in immune-compromised individuals. The basidiomycetes are believed to have diverged from the ascomycetes, a classification that includes Saccharomyces cerevisiae (brewer’s yeast) and Neurospora (bread mold), over 500 million years ago, and to be more than a billion years removed from plants and animals.


"Sequencing the white rot genome is the first step toward understanding a very complex chemical process," says Randy Berka, research fellow from Novozymes Biotech in Davis, Calif., and one of the authors on the paper. "This organism is capable of doing some unique and complicated biochemistry. But with the genetic blueprint in hand, we can begin to understand the choreography of how white rot fungi degrade lignin and assess the implications for the pulp and paper industry and for bioremediation applications. Having free access to the complete manifest that the genome provides will enable researchers to realize industrial and societal benefits sooner."

White rots are filamentous, or threadlike, wood decay fungi commonly found inhabiting forest detritus and fallen trees. The name derives from the bleached skeletal appearance of the crystalline cellulose left by selective degradation of lignin caused by these fungi. P. chrysosporium has the uncanny ability to consume the lignin and leave the cellulose of the wood virtually untouched--a major asset in paper production. White rot fungi catalyze the initial decomposition of lignin by secreting an array of enzymes known as oxidases and peroxidases.

"By elucidating the repertoire of genes, the P. chrysosporium genome database now established provides an experimental framework to more fully understand this fundamental process," says Dan Cullen, research scientist with the USDA Forest Products Lab in Madison, Wisconsin, and another author on the paper.

"The oxidative enzyme systems of P. chrysosporium not only degrade lignin but also transform an impressive array of xenobiotics," says Cullen. Xenobiotics are man-made compounds, for instance, the broad spectrum of organopollutants that include PCBs (polychlorinated biphenyls), PCP (pentachlorophenol), and various PAHs (polycyclic aromatic hydrocarbons). In numerous laboratory and field trials Phanerochaete has been shown to degrade these compounds for the remediation of contaminated soils and effluents.

"These enzymes hold much promise in the modification of wood and textile fibers and in converting low-grade materials into fuels and chemicals," Cullen continues. "Of particular interest to the pulp and paper industry are such enzyme systems that offer environmentally friendly approaches to bleaching. The white rot genome also provides a foundation for clarifying the genetics and physiology of fungal colonization of wood.

"This information is key to improving bioprocesses such as biomechanical pulping where fungal pretreatment of wood chips substantially reduces energy consumption in mechanical pulping," says Cullen. "Further, the information gives us insight into the destructive decay of wood ’in service’ and may ultimately pave the way for developing effective and environmentally benign preservatives."

JGI used the shotgun sequencing approach to attain over ten times coverage across the 30-million-base pair genome of P. chrysosporium. "By employing a predictive modeling strategy for gene finding, the annotation team identified 11,777 genes in the genome," says Diego Martinez, a JGI biomedical scientist and lead author on the paper. "Rich with enzymatic activity, the P. chrysosporium genome harbors the genetic information to encode more than 240 theoretical carbohydrate-active enzymes."

The other authors of the Nature Biotechnology article include Luis F. Larrondo of the Millenium Institute for Fundamental and Applied Biology, Pontifica Universidad Católica de Chile; Nik Putnam, Jarrod Chapman, Maarten D. Sollewijn Gelpke , Katherine Huang and J. Chris Detter of JGI; Kevin G Helfenbein of the Invertebrate Zoology, American Museum of Natural History, New York City; Preethi Ramaiya of Novozymes Biotech; Frank Larimer of Oak Ridge National Laboratory; Pedro M. Coutinho and Bernard Henrissat of the Architecture et Fonction des Macromolécules Biologiques, and Universités d’Aix-Marseille, France. The annotated genome, with the various highlighted genes and genetic motifs, is available on an interactive web portal at http://www.jgi.doe.gov/whiterot/.

The Joint Genome Institute (JGI), located in Walnut Creek, California, was established in 1997 by three of the DOE national laboratories managed by the University of California: Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory in California and Los Alamos National Laboratory in New Mexico. In addition to its microbial sequencing projects, JGI has whole-genome sequencing programs that include vertebrates, fungi, and plants. Funding for the JGI is predominantly from the Office of Biological and Environmental Research in DOE’s Office of Science.


For More Information, Contact:
David Gilbert
Joint Genome Institute
(925) 296-5643
DEGilbert@lbl.gov

David Gilbert | DOE / Joint Genome Institute
Further information:
http://www.jgi.doe.gov/News/news_5_2_04.html

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>