Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


JGI Decodes Wood & Toxic Waste-Degrading Fungus Genome


The United States Department of Energy (DOE) Joint Genome Institute (JGI) announces today the publication of a high-quality draft genome sequence of the white rot fungus, Phanerochaete chrysosporium. These are the only known microbes capable of efficiently degrading the recalcitrant aromatic plant polymer lignin, one of the most abundant natural materials on earth. White rot fungi such as Phanerochaete chrysosporium play a pivotal role in the carbon cycle--the circulation of carbon from the atmosphere into organisms and back again. They also have demonstrated the ability to remediate explosive contaminants, pesticides and toxic waste with similar chemical structures to lignin. The sequence findings are summarized in the May 2nd on-line edition of the journal Nature Biotechnology.

"Phanerochaete chrysosporium is the first basidiomycete fungus to be sequenced, providing a glimpse into the genetic diversity of fungi," says Dan Rokhsar, head of the JGI Computational Genomics Department. "It’s the first of a trio of fungal genomes we’ll be tackling that have their own unique constellation of degradative enzymes. The availability of these genomes will spur industrial and bioremediative uses for these organisms."

Basidiomycetes are represented by important agricultural species including the familiar edible white button mushroom, Agaricus bisporus, and such plant pathogens as smuts and rusts. They also comprise certain opportunistic human pathogens that can be problematic especially in immune-compromised individuals. The basidiomycetes are believed to have diverged from the ascomycetes, a classification that includes Saccharomyces cerevisiae (brewer’s yeast) and Neurospora (bread mold), over 500 million years ago, and to be more than a billion years removed from plants and animals.

"Sequencing the white rot genome is the first step toward understanding a very complex chemical process," says Randy Berka, research fellow from Novozymes Biotech in Davis, Calif., and one of the authors on the paper. "This organism is capable of doing some unique and complicated biochemistry. But with the genetic blueprint in hand, we can begin to understand the choreography of how white rot fungi degrade lignin and assess the implications for the pulp and paper industry and for bioremediation applications. Having free access to the complete manifest that the genome provides will enable researchers to realize industrial and societal benefits sooner."

White rots are filamentous, or threadlike, wood decay fungi commonly found inhabiting forest detritus and fallen trees. The name derives from the bleached skeletal appearance of the crystalline cellulose left by selective degradation of lignin caused by these fungi. P. chrysosporium has the uncanny ability to consume the lignin and leave the cellulose of the wood virtually untouched--a major asset in paper production. White rot fungi catalyze the initial decomposition of lignin by secreting an array of enzymes known as oxidases and peroxidases.

"By elucidating the repertoire of genes, the P. chrysosporium genome database now established provides an experimental framework to more fully understand this fundamental process," says Dan Cullen, research scientist with the USDA Forest Products Lab in Madison, Wisconsin, and another author on the paper.

"The oxidative enzyme systems of P. chrysosporium not only degrade lignin but also transform an impressive array of xenobiotics," says Cullen. Xenobiotics are man-made compounds, for instance, the broad spectrum of organopollutants that include PCBs (polychlorinated biphenyls), PCP (pentachlorophenol), and various PAHs (polycyclic aromatic hydrocarbons). In numerous laboratory and field trials Phanerochaete has been shown to degrade these compounds for the remediation of contaminated soils and effluents.

"These enzymes hold much promise in the modification of wood and textile fibers and in converting low-grade materials into fuels and chemicals," Cullen continues. "Of particular interest to the pulp and paper industry are such enzyme systems that offer environmentally friendly approaches to bleaching. The white rot genome also provides a foundation for clarifying the genetics and physiology of fungal colonization of wood.

"This information is key to improving bioprocesses such as biomechanical pulping where fungal pretreatment of wood chips substantially reduces energy consumption in mechanical pulping," says Cullen. "Further, the information gives us insight into the destructive decay of wood ’in service’ and may ultimately pave the way for developing effective and environmentally benign preservatives."

JGI used the shotgun sequencing approach to attain over ten times coverage across the 30-million-base pair genome of P. chrysosporium. "By employing a predictive modeling strategy for gene finding, the annotation team identified 11,777 genes in the genome," says Diego Martinez, a JGI biomedical scientist and lead author on the paper. "Rich with enzymatic activity, the P. chrysosporium genome harbors the genetic information to encode more than 240 theoretical carbohydrate-active enzymes."

The other authors of the Nature Biotechnology article include Luis F. Larrondo of the Millenium Institute for Fundamental and Applied Biology, Pontifica Universidad Católica de Chile; Nik Putnam, Jarrod Chapman, Maarten D. Sollewijn Gelpke , Katherine Huang and J. Chris Detter of JGI; Kevin G Helfenbein of the Invertebrate Zoology, American Museum of Natural History, New York City; Preethi Ramaiya of Novozymes Biotech; Frank Larimer of Oak Ridge National Laboratory; Pedro M. Coutinho and Bernard Henrissat of the Architecture et Fonction des Macromolécules Biologiques, and Universités d’Aix-Marseille, France. The annotated genome, with the various highlighted genes and genetic motifs, is available on an interactive web portal at

The Joint Genome Institute (JGI), located in Walnut Creek, California, was established in 1997 by three of the DOE national laboratories managed by the University of California: Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory in California and Los Alamos National Laboratory in New Mexico. In addition to its microbial sequencing projects, JGI has whole-genome sequencing programs that include vertebrates, fungi, and plants. Funding for the JGI is predominantly from the Office of Biological and Environmental Research in DOE’s Office of Science.

For More Information, Contact:
David Gilbert
Joint Genome Institute
(925) 296-5643

David Gilbert | DOE / Joint Genome Institute
Further information:

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>