Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wasps’ brains enlarge as they perform more demanding jobs

16.03.2004


Scientists have known for some time that some social insects undergo dramatic behavioral changes as they mature, and now a research team has found that the brains of a wasp species correspondingly enlarge as the creatures engage in more complex tasks.



"The amount of change is striking," said Sean O’Donnell, a University of Washington associate professor of psychology and lead author of a new study published in the February issue of Neuroscience Letters. "It is easily apparent with magnification."

O’Donnell said the changes take place in sections of the brain called the mushroom bodies. There is one mushroom body on top of each hemisphere of the wasp brain and the structures have a superficial resemblance to the cerebrum in humans and other vertebrates, he said. The enlargement was centered in a part of the mushroom body called the calyx where neural connections are made.


O’Donnell and other researchers study social insects such as wasps, honeybees and ants as models to understand the role of neuroplasticity in driving complex social behaviors such as the division of labor.

The wasps he studied, Polybia aequatorialis, live in colonies of 2,000 or more workers and the adults undergo striking behavioral changes as they age. They perform different jobs for the colony in a developmental sequence. Workers begin contributing to a colony by performing tasks in the interior of the nest before later moving on to jobs on the nest exterior. Finally, they leave the nest to forage for food and building materials.

O’Donnell and his colleagues from the University of Texas, Austin, found that the mushroom bodies of the wasps progressively increased in size through this sequence. The largest increase came when the insects first switched from working inside to working outside of the nest.

"What is happening is that the complexity of the tasks the insects engage in is increasing," O’Donnell said. "They are going from living in a very constrained spatial area with dim light to working outside the nest where there is a complex sensory environment with higher light levels. Finally, they have to leave the nest to forage for materials and then locate their way home to the nest."

He said social insects have relatively large mushroom bodies compared to solitary insects, such as butterflies or roaches, suggesting that these brain structures play a special role in regulating social behavior.

"This is important because social insects are among the most ecologically successful animals and their impact is huge," O’Donnell said. "They are pollinators, decomposers, predators and herbivores. The biomass of ants alone roughly equals that of humans. Social insects are successful because of their social complexity and division of labor. We are trying to get a handle on how such complex behaviors are driven."

The next step for the researchers involves marking workers on the first day of life and inserting them into colonies to look at the development of neural plasticity. They intend to work with Polybia again, as well as with a primitive social wasp that lives in colonies of several dozen workers, in a comparative analysis to see how neural plasticity evolved.

Co-authors of the study funded by the National Science Foundation are Theresa Jones, a UT associate professor of psychology, and Nicole Donlan, a research technician who also is at UT.


For more information, contact O’Donnell at 206-543-2315 or sodonnel@u.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>