Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wasps’ brains enlarge as they perform more demanding jobs

16.03.2004


Scientists have known for some time that some social insects undergo dramatic behavioral changes as they mature, and now a research team has found that the brains of a wasp species correspondingly enlarge as the creatures engage in more complex tasks.



"The amount of change is striking," said Sean O’Donnell, a University of Washington associate professor of psychology and lead author of a new study published in the February issue of Neuroscience Letters. "It is easily apparent with magnification."

O’Donnell said the changes take place in sections of the brain called the mushroom bodies. There is one mushroom body on top of each hemisphere of the wasp brain and the structures have a superficial resemblance to the cerebrum in humans and other vertebrates, he said. The enlargement was centered in a part of the mushroom body called the calyx where neural connections are made.


O’Donnell and other researchers study social insects such as wasps, honeybees and ants as models to understand the role of neuroplasticity in driving complex social behaviors such as the division of labor.

The wasps he studied, Polybia aequatorialis, live in colonies of 2,000 or more workers and the adults undergo striking behavioral changes as they age. They perform different jobs for the colony in a developmental sequence. Workers begin contributing to a colony by performing tasks in the interior of the nest before later moving on to jobs on the nest exterior. Finally, they leave the nest to forage for food and building materials.

O’Donnell and his colleagues from the University of Texas, Austin, found that the mushroom bodies of the wasps progressively increased in size through this sequence. The largest increase came when the insects first switched from working inside to working outside of the nest.

"What is happening is that the complexity of the tasks the insects engage in is increasing," O’Donnell said. "They are going from living in a very constrained spatial area with dim light to working outside the nest where there is a complex sensory environment with higher light levels. Finally, they have to leave the nest to forage for materials and then locate their way home to the nest."

He said social insects have relatively large mushroom bodies compared to solitary insects, such as butterflies or roaches, suggesting that these brain structures play a special role in regulating social behavior.

"This is important because social insects are among the most ecologically successful animals and their impact is huge," O’Donnell said. "They are pollinators, decomposers, predators and herbivores. The biomass of ants alone roughly equals that of humans. Social insects are successful because of their social complexity and division of labor. We are trying to get a handle on how such complex behaviors are driven."

The next step for the researchers involves marking workers on the first day of life and inserting them into colonies to look at the development of neural plasticity. They intend to work with Polybia again, as well as with a primitive social wasp that lives in colonies of several dozen workers, in a comparative analysis to see how neural plasticity evolved.

Co-authors of the study funded by the National Science Foundation are Theresa Jones, a UT associate professor of psychology, and Nicole Donlan, a research technician who also is at UT.


For more information, contact O’Donnell at 206-543-2315 or sodonnel@u.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>