Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wasps’ brains enlarge as they perform more demanding jobs

16.03.2004


Scientists have known for some time that some social insects undergo dramatic behavioral changes as they mature, and now a research team has found that the brains of a wasp species correspondingly enlarge as the creatures engage in more complex tasks.



"The amount of change is striking," said Sean O’Donnell, a University of Washington associate professor of psychology and lead author of a new study published in the February issue of Neuroscience Letters. "It is easily apparent with magnification."

O’Donnell said the changes take place in sections of the brain called the mushroom bodies. There is one mushroom body on top of each hemisphere of the wasp brain and the structures have a superficial resemblance to the cerebrum in humans and other vertebrates, he said. The enlargement was centered in a part of the mushroom body called the calyx where neural connections are made.


O’Donnell and other researchers study social insects such as wasps, honeybees and ants as models to understand the role of neuroplasticity in driving complex social behaviors such as the division of labor.

The wasps he studied, Polybia aequatorialis, live in colonies of 2,000 or more workers and the adults undergo striking behavioral changes as they age. They perform different jobs for the colony in a developmental sequence. Workers begin contributing to a colony by performing tasks in the interior of the nest before later moving on to jobs on the nest exterior. Finally, they leave the nest to forage for food and building materials.

O’Donnell and his colleagues from the University of Texas, Austin, found that the mushroom bodies of the wasps progressively increased in size through this sequence. The largest increase came when the insects first switched from working inside to working outside of the nest.

"What is happening is that the complexity of the tasks the insects engage in is increasing," O’Donnell said. "They are going from living in a very constrained spatial area with dim light to working outside the nest where there is a complex sensory environment with higher light levels. Finally, they have to leave the nest to forage for materials and then locate their way home to the nest."

He said social insects have relatively large mushroom bodies compared to solitary insects, such as butterflies or roaches, suggesting that these brain structures play a special role in regulating social behavior.

"This is important because social insects are among the most ecologically successful animals and their impact is huge," O’Donnell said. "They are pollinators, decomposers, predators and herbivores. The biomass of ants alone roughly equals that of humans. Social insects are successful because of their social complexity and division of labor. We are trying to get a handle on how such complex behaviors are driven."

The next step for the researchers involves marking workers on the first day of life and inserting them into colonies to look at the development of neural plasticity. They intend to work with Polybia again, as well as with a primitive social wasp that lives in colonies of several dozen workers, in a comparative analysis to see how neural plasticity evolved.

Co-authors of the study funded by the National Science Foundation are Theresa Jones, a UT associate professor of psychology, and Nicole Donlan, a research technician who also is at UT.


For more information, contact O’Donnell at 206-543-2315 or sodonnel@u.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>