Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers identify gene as essential for vascular smooth muscle development

11.03.2004


Dr. Eric Olson, chairman of molecular biology at UT Southwestern Medical Center at Dallas, has found a major mechanism to explain normal and abnormal smooth muscle growth, a finding that could help in developing therapeutics for disorders like hypertension and asthma.


Researchers at UT Southwestern Medical Center at Dallas have discovered a major mechanism to explain normal and abnormal smooth muscle growth, a finding that could help in the development of novel therapeutics for disorders like hypertension and asthma.

Their work appears in today’s issue of Nature.

Smooth muscle cells are essential for the formation and function of the cardiovascular system, as well as many internal organs such as the stomach, intestine, bladder and uterus. Abnormalities in their growth can cause a wide range of human disorders, including atherosclerosis, hypertension, asthma and leiomyosarcoma (a fatal smooth-muscle cancer). The molecular mechanisms that control smooth muscle cell growth and differentiation, however, have been poorly understood.



"It has long been known that many diseases result from abnormal growth of smooth muscle cells," said Dr. Eric Olson, chairman of molecular biology and senior author of the study. "The new findings are quite exciting because they reveal a previously unknown mechanism that controls the growth and differentiation of smooth muscle cells. Knowing this mechanism, we can think about ways of regulating it to control smooth muscle growth during disease."

Dr. Olson recently discovered a master regulator of smooth muscle development, a protein called myocardin. This regulator turns on smooth muscle genes by interacting with serum response factor (SRF), a widely expressed protein that binds DNA.

In the Nature study, Dr. Olson and his colleagues showed that the ability of myocardin to turn on smooth muscle genes is counteracted by another protein, Elk-1, which prevents myocardin from binding to SRF. When Elk-1 displaces the myocardin from SRF, it triggers smooth muscle cell proliferation, an effect associated with cardiovascular disease.

With these findings, scientists now have important new insights into the cellular mechanisms that control the growth and differentiation of smooth muscle cells. The findings also offer many interesting opportunities for therapeutic intervention, said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.

Other UT Southwestern contributors to the Nature study were Zhigao Wang, student research assistant in molecular biology, and John McAnally, research associate in molecular biology. Researchers from the University of North Carolina, Chapel Hill, and Tuebingen University in Germany also contributed.


The research was supported by grants from the National Institutes of Health, the McGowan Foundation, the Donald W. Reynolds Foundation, the Robert A. Welch Foundation, the Muscular Dystrophy Association and the German research foundation Deutsche Forschungsgemeinschaft.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Scott Maier | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>