Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein Sequences: Not So Predictable After All


Scientists have believed for decades that the sequencing of the human genome would automatically yield the sequences of proteins, the functional products of genes, and thus lead to the unraveling of the mechanisms behind human cell biology and disease. However, a paper published in Science today by the Ludwig Institute for Cancer Research (LICR) describes a novel cellular process that casts some doubt on the accepted paradigm of deducing a protein’s sequence from the DNA sequence of its gene.

When a protein is called upon to act in a cellular process, segments (exons) of the gene’s DNA are transcribed into RNA fragments, which are then spliced (joined) together according to directions encoded by the DNA. The RNA transcript is then translated into amino acids which form a protein. When the protein is no longer required by the cell, it is degraded by a specialized complex called the ‘proteasome’. Although functionally different proteins can be produced from one gene sequence - by modification through the addition of small molecules to the amino acids, by truncation of the sequence, or by the translation of RNA transcripts that omit some exons - they are variations on a theme determined essentially by the gene’s DNA sequence. However scientists at the LICR Branch in Brussels, Belgium, have now shown that the sequence of a human protein can actually be altered by the proteasome in ways that are completely unpredicted by the gene sequence. The discovery is both a new process for protein processing and a novel, hitherto unsuspected role for the proteasome.

‘Post-translational splicing’ was discovered when the LICR team analyzed small protein sequences that activate the immune system in response to the presence of cancer cells. These ‘peptide antigens’ are created when the proteasome fragments a cancer-specific protein into peptides, which are then transported to the cell surface to mark the cell for immunological destruction. The team found that one peptide antigen, which stimulated the immune system to recognize and destroy melanoma cells, had a sequence quite unlike that predicted by its gene sequence. Upon investigating further, the researchers found that the proteasome had cut a peptide in three and had then rejoined the pieces so that the peptide antigen now recognized by the immune system was missing part of its original sequence.

“Post-translational splicing is a fascinating process in its own right,’ says Dr. Benoît Van den Eynde, the senior author of the study, “but it also has important implications for the design of cancer or HIV vaccines based on peptide antigens. Synthetic peptides being investigated in early-phase clinical trials of vaccines are usually designed based on the gene sequence of cancer-specific proteins. However post-translational splicing may be modifying the peptide antigens in ways that we haven’t even suspected before now.”

The issue of predicted versus post-translationally spliced, novel peptide antigens is a particularly important consideration when monitoring immunological responses to cancer vaccines in patients. The existing methodologies typically quantify the presence of T cells specific for the predicted peptide antigen, and would not detect T cells specific for the novel peptide antigen. Additional studies are required to determine if proteome-mediated post-translational splicing occurs in relation to cancer and/or virally-infected cells, and if so, the frequency of occurrence of such novel peptide antigens in these diseases.

The discovery of post-translational splicing has immunologists intrigued by the additional complications in antigen identification, and cell biologists excited by a new insight into the proteasome’s bag of tricks. However for geneticists and biochemists, the discovery of post-translational splicing may have produced a slight sense of unease. Until we know exactly when, why, and how often post-translational splicing occurs, we can no longer automatically assume that the human genome holds all the answers for predicting protein sequences.

Sarah White | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>