Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Sequences: Not So Predictable After All

04.03.2004


Scientists have believed for decades that the sequencing of the human genome would automatically yield the sequences of proteins, the functional products of genes, and thus lead to the unraveling of the mechanisms behind human cell biology and disease. However, a paper published in Science today by the Ludwig Institute for Cancer Research (LICR) describes a novel cellular process that casts some doubt on the accepted paradigm of deducing a protein’s sequence from the DNA sequence of its gene.

When a protein is called upon to act in a cellular process, segments (exons) of the gene’s DNA are transcribed into RNA fragments, which are then spliced (joined) together according to directions encoded by the DNA. The RNA transcript is then translated into amino acids which form a protein. When the protein is no longer required by the cell, it is degraded by a specialized complex called the ‘proteasome’. Although functionally different proteins can be produced from one gene sequence - by modification through the addition of small molecules to the amino acids, by truncation of the sequence, or by the translation of RNA transcripts that omit some exons - they are variations on a theme determined essentially by the gene’s DNA sequence. However scientists at the LICR Branch in Brussels, Belgium, have now shown that the sequence of a human protein can actually be altered by the proteasome in ways that are completely unpredicted by the gene sequence. The discovery is both a new process for protein processing and a novel, hitherto unsuspected role for the proteasome.

‘Post-translational splicing’ was discovered when the LICR team analyzed small protein sequences that activate the immune system in response to the presence of cancer cells. These ‘peptide antigens’ are created when the proteasome fragments a cancer-specific protein into peptides, which are then transported to the cell surface to mark the cell for immunological destruction. The team found that one peptide antigen, which stimulated the immune system to recognize and destroy melanoma cells, had a sequence quite unlike that predicted by its gene sequence. Upon investigating further, the researchers found that the proteasome had cut a peptide in three and had then rejoined the pieces so that the peptide antigen now recognized by the immune system was missing part of its original sequence.



“Post-translational splicing is a fascinating process in its own right,’ says Dr. Benoît Van den Eynde, the senior author of the study, “but it also has important implications for the design of cancer or HIV vaccines based on peptide antigens. Synthetic peptides being investigated in early-phase clinical trials of vaccines are usually designed based on the gene sequence of cancer-specific proteins. However post-translational splicing may be modifying the peptide antigens in ways that we haven’t even suspected before now.”

The issue of predicted versus post-translationally spliced, novel peptide antigens is a particularly important consideration when monitoring immunological responses to cancer vaccines in patients. The existing methodologies typically quantify the presence of T cells specific for the predicted peptide antigen, and would not detect T cells specific for the novel peptide antigen. Additional studies are required to determine if proteome-mediated post-translational splicing occurs in relation to cancer and/or virally-infected cells, and if so, the frequency of occurrence of such novel peptide antigens in these diseases.

The discovery of post-translational splicing has immunologists intrigued by the additional complications in antigen identification, and cell biologists excited by a new insight into the proteasome’s bag of tricks. However for geneticists and biochemists, the discovery of post-translational splicing may have produced a slight sense of unease. Until we know exactly when, why, and how often post-translational splicing occurs, we can no longer automatically assume that the human genome holds all the answers for predicting protein sequences.

Sarah White | alfa
Further information:
http://www.licr.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>