Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system’s attack dogs kept on genetic leash

13.02.2004


Loss of restraint may contribute to lupus, other autoimmune disorders



When they’re not busy battling invaders, some of the cells that act as the attack dogs of the mouse immune system have to be kept on a genetic leash to prevent them from mounting inappropriate attacks on the mouse’s own tissues, researchers from Washington University School of Medicine in St. Louis have found.

The findings, reported in this week’s issue of Science, are the first scientific proof of a theory that could open up a significant new front in the battle to control autoimmune diseases like lupus, multiple sclerosis and diabetes.


"We used to think of mature immune cells like T cells and B cells as metabolically inactive when waiting for infections or other signals that trigger an attack," says Stanford Peng, M.D., Ph.D., assistant professor of internal medicine and of pathology and immunology. "We’re now thinking these resting cells actually are very metabolically active, and they are kept in a quiescent state by genes actively working to shut down activating proteins."

In the new study, Peng and colleagues showed for the first time that a gene, Foxj1, helps keep immune attack cells inactive. If malfunctions in this gene and others contribute to human autoimmune diseases, researchers may be able to develop new treatments that restore the genes’ functions and ease patients’ symptoms.

"Our efforts to develop new treatments have been focused on pathological targets in autoimmune diseases -- genes that are overused or are used inappropriately, leading to immune system attacks on self," Peng explains. "Another concept we should keep in mind is that the loss of one of these regulatory genes that keep the immune system in check also may be a primary contributing factor."

Peng notes, though, that errors in regulatory genes are unlikely to be the sole cause of a particular autoimmune disorder.

"You probably need multiple malfunctions in different genes to cause a severe autoimmune syndrome," he explains.

The Lupus Foundation of America estimates about 1.5 million Americans have lupus, which can cause arthritis, prolonged fatigue, skin rashes, kidney damage, anemia and breathing pain.

Many key symptoms of human lupus spontaneously appeared in lines of mice being bred for other purposes by various scientists in the 1960s and 1970s. Peng and colleagues compared the activity levels of different genes in cells from normal mice and from the mice that develop lupus. They measured how often cells used the genes to make messenger RNA, which is like an order slip for production of a copy of the gene’s protein.

"Although Foxj1 had never previously been shown to have an immune system role, cells of the mice with lupus were clearly making less RNA from this gene, and this is typically reflective of reduced activity on the part of the gene’s protein," Peng says.

When Peng’s group disabled the gene in the immune systems of normal mice, they developed a lupus-like syndrome, with inflammation in the salivary glands, lungs, kidneys and several other organs.

The protein made from the gene already was known to be a transcription factor -- a protein that promotes or suppresses the creation of proteins made from other genes. Peng found that lack of the Foxj1 protein increased activity of another transcription factor, NF-B.

"This protein belongs to a family of transcription factors heavily implicated in various types of inflammation," Peng says. "So our thinking is that without the protein, more NF-B is activated, possibly triggering the inappropriate activation of immune cells."

Peng speculates that other Fox gene family members may play an intrinsic role in keeping immune cells quiet or in preparing them to battle invaders.

"There’s not a lot known yet about the family of Fox genes," Peng says. "One member, Foxp3, has been linked to the development of regulatory T cells that suppress the activation of other immune cells. But that’s an external limit on cell activation. Foxj1 is the first gene to limit activity instrinsically, or from within the cell itself."

Peng continues to investigate the basic biochemistry of the gene, which also has been identified in humans. He hopes to look for signs of malfunction in the gene in humans with lupus and other autoimmune disorders.

"This may be relevant to other diseases beyond lupus," Peng says. "In diabetes, for example, it’s known that T cells, one of the cell types affected by this gene, attack the pancreas. In multiple sclerosis, T cells appear to attack the brain. So this gene may have a much more general role to play."


Lin L, Spoor MS, Gerth AJ, Brody SL, Peng SL. Modulation of Th1 activation and inflammation by the NF-B repressor Foxj1. Science, Feb. 13, 2004.

Funding from the Lupus Research Institute, the Arthritis Foundation, the National Institutes of Health, the Siteman Cancer Center, the Diabetes Research and Training Center and the Digestive Diseases Research Core Center of the Washington University School of Medicine supported this research.

Michael C. Purdy | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/48AC43D9D7D4AC4486256E370075894A?OpenDocument

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>