Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice centromere, supposedly quiet genetic domain, surprises

12.01.2004


Probing the last genomic frontier of higher organisms, an international team of scientists has succeeded in sequencing a little understood - but critical - genetic domain in rice.



In doing so, the group, led by Jiming Jiang, a professor of horticulture at the University of Wisconsin-Madison, and C. Robin Buell of the Institute for Genomic Research in Rockville, Md., has exposed a supposedly barren region of a rice chromosome known as the centromere. The work, published in the current (Jan. 11) online editions of the journal Nature Genetics, reveals for the first time that a native centromere, typically composed of enormous spans of indecipherable, non-coding DNA, contains active genes.

The feat promises to help fill in a key genetic void and enhance the scientific understanding of chromosomes, the molecular structures that are found in all animal and plant cells, and are the essential carriers of hereditary information, enabling the processes of cell division and replication.


At a practical level, the work is a necessary step toward science’s long-term goal of creating an artificial chromosome for plants, says Jiang. Such a tool, now available only for humans and yeast, would be an invaluable aid to scientific study and a precursor to precision plant engineering techniques.

"This is a significant step," says Jiang. "This is the first centromere to be sequenced at this level for any higher organism."

The centromere of rice, says Jiang, lent itself to sequencing because, unlike centromeres from other organisms, it is of a manageable size. Most centromeres are composed of vast stretches of what was once called "junk DNA," seemingly nonsense genetic sequences with no apparent coding function.

"They’re humongous," Jiang explains. The DNA within centromeres is "highly repetitive, and it is resistant to mapping, cloning and sequencing," he says.

The finding of active genes was a surprise, says Jiang. The newly discovered rice centromere genes, whose functions are unknown, belie the idea that the centromere is an enormous molecular wasteland composed only of non-coding DNA.

"This is the first time active genes have been found in a native centromere," according to Jiang. "There are at least four active genes" interspersed in the DNA of the rice centromere.

The centromere is one of three essential elements of every chromosome. In addition to centromeres, chromosomes are composed of telomeres, genetic sequences that cap and protect the ends of chromosomes, and a site known as the "origin of replication" or "ori," where the actual business of genetic replication takes place. With all three components in hand, it would be possible, in theory, to construct an artificial chromosome.

In most organisms, including the critical model organisms such as the mouse, the fruit fly Drosophila melanogaster and the plant Arabidopsis thaliana, centromeres have proved to be nearly intractable for sequencing.

The rice centromere is accessible, says Jiang, because the centromere of rice chromosome 8 lacks the vast tracts of repetitive non-coding DNA common to most species. And that there are active genes in the centromeres of rice provides an intriguing window to evolution. It may be that the centromere sequenced by the team led by Jiang is in its early evolutionary stages.

The evolutionary progression of the centromeres, Jiang suggests, may be analogous to how temperate forests evolve from more diverse ecosystems to climax forests where a single species of tree dominates. In the rice centromere, it may be that evolution has not yet purged active genes to be replaced by the long and repetitive blocks of DNA that mark the centromeres of most organisms.

In addition to Jiang and Buell, co authors of the Nature Genetics paper include lead author Kiyotaka Nagaki, also of UW-Madison; Zhukuan Cheng of the Chinese Academy of Sciences; Shu Ouyang, Mary Kim and Kristine M. Jones of the Institute for Genomic Research; and Paul B. Talbert and Steven Henikoff of the Howard Hughes Medical Institute at the Fred Hutchinson Cancer Research Center on Seattle.


- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>