Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice centromere, supposedly quiet genetic domain, surprises

12.01.2004


Probing the last genomic frontier of higher organisms, an international team of scientists has succeeded in sequencing a little understood - but critical - genetic domain in rice.



In doing so, the group, led by Jiming Jiang, a professor of horticulture at the University of Wisconsin-Madison, and C. Robin Buell of the Institute for Genomic Research in Rockville, Md., has exposed a supposedly barren region of a rice chromosome known as the centromere. The work, published in the current (Jan. 11) online editions of the journal Nature Genetics, reveals for the first time that a native centromere, typically composed of enormous spans of indecipherable, non-coding DNA, contains active genes.

The feat promises to help fill in a key genetic void and enhance the scientific understanding of chromosomes, the molecular structures that are found in all animal and plant cells, and are the essential carriers of hereditary information, enabling the processes of cell division and replication.


At a practical level, the work is a necessary step toward science’s long-term goal of creating an artificial chromosome for plants, says Jiang. Such a tool, now available only for humans and yeast, would be an invaluable aid to scientific study and a precursor to precision plant engineering techniques.

"This is a significant step," says Jiang. "This is the first centromere to be sequenced at this level for any higher organism."

The centromere of rice, says Jiang, lent itself to sequencing because, unlike centromeres from other organisms, it is of a manageable size. Most centromeres are composed of vast stretches of what was once called "junk DNA," seemingly nonsense genetic sequences with no apparent coding function.

"They’re humongous," Jiang explains. The DNA within centromeres is "highly repetitive, and it is resistant to mapping, cloning and sequencing," he says.

The finding of active genes was a surprise, says Jiang. The newly discovered rice centromere genes, whose functions are unknown, belie the idea that the centromere is an enormous molecular wasteland composed only of non-coding DNA.

"This is the first time active genes have been found in a native centromere," according to Jiang. "There are at least four active genes" interspersed in the DNA of the rice centromere.

The centromere is one of three essential elements of every chromosome. In addition to centromeres, chromosomes are composed of telomeres, genetic sequences that cap and protect the ends of chromosomes, and a site known as the "origin of replication" or "ori," where the actual business of genetic replication takes place. With all three components in hand, it would be possible, in theory, to construct an artificial chromosome.

In most organisms, including the critical model organisms such as the mouse, the fruit fly Drosophila melanogaster and the plant Arabidopsis thaliana, centromeres have proved to be nearly intractable for sequencing.

The rice centromere is accessible, says Jiang, because the centromere of rice chromosome 8 lacks the vast tracts of repetitive non-coding DNA common to most species. And that there are active genes in the centromeres of rice provides an intriguing window to evolution. It may be that the centromere sequenced by the team led by Jiang is in its early evolutionary stages.

The evolutionary progression of the centromeres, Jiang suggests, may be analogous to how temperate forests evolve from more diverse ecosystems to climax forests where a single species of tree dominates. In the rice centromere, it may be that evolution has not yet purged active genes to be replaced by the long and repetitive blocks of DNA that mark the centromeres of most organisms.

In addition to Jiang and Buell, co authors of the Nature Genetics paper include lead author Kiyotaka Nagaki, also of UW-Madison; Zhukuan Cheng of the Chinese Academy of Sciences; Shu Ouyang, Mary Kim and Kristine M. Jones of the Institute for Genomic Research; and Paul B. Talbert and Steven Henikoff of the Howard Hughes Medical Institute at the Fred Hutchinson Cancer Research Center on Seattle.


- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>