Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice centromere, supposedly quiet genetic domain, surprises

12.01.2004


Probing the last genomic frontier of higher organisms, an international team of scientists has succeeded in sequencing a little understood - but critical - genetic domain in rice.



In doing so, the group, led by Jiming Jiang, a professor of horticulture at the University of Wisconsin-Madison, and C. Robin Buell of the Institute for Genomic Research in Rockville, Md., has exposed a supposedly barren region of a rice chromosome known as the centromere. The work, published in the current (Jan. 11) online editions of the journal Nature Genetics, reveals for the first time that a native centromere, typically composed of enormous spans of indecipherable, non-coding DNA, contains active genes.

The feat promises to help fill in a key genetic void and enhance the scientific understanding of chromosomes, the molecular structures that are found in all animal and plant cells, and are the essential carriers of hereditary information, enabling the processes of cell division and replication.


At a practical level, the work is a necessary step toward science’s long-term goal of creating an artificial chromosome for plants, says Jiang. Such a tool, now available only for humans and yeast, would be an invaluable aid to scientific study and a precursor to precision plant engineering techniques.

"This is a significant step," says Jiang. "This is the first centromere to be sequenced at this level for any higher organism."

The centromere of rice, says Jiang, lent itself to sequencing because, unlike centromeres from other organisms, it is of a manageable size. Most centromeres are composed of vast stretches of what was once called "junk DNA," seemingly nonsense genetic sequences with no apparent coding function.

"They’re humongous," Jiang explains. The DNA within centromeres is "highly repetitive, and it is resistant to mapping, cloning and sequencing," he says.

The finding of active genes was a surprise, says Jiang. The newly discovered rice centromere genes, whose functions are unknown, belie the idea that the centromere is an enormous molecular wasteland composed only of non-coding DNA.

"This is the first time active genes have been found in a native centromere," according to Jiang. "There are at least four active genes" interspersed in the DNA of the rice centromere.

The centromere is one of three essential elements of every chromosome. In addition to centromeres, chromosomes are composed of telomeres, genetic sequences that cap and protect the ends of chromosomes, and a site known as the "origin of replication" or "ori," where the actual business of genetic replication takes place. With all three components in hand, it would be possible, in theory, to construct an artificial chromosome.

In most organisms, including the critical model organisms such as the mouse, the fruit fly Drosophila melanogaster and the plant Arabidopsis thaliana, centromeres have proved to be nearly intractable for sequencing.

The rice centromere is accessible, says Jiang, because the centromere of rice chromosome 8 lacks the vast tracts of repetitive non-coding DNA common to most species. And that there are active genes in the centromeres of rice provides an intriguing window to evolution. It may be that the centromere sequenced by the team led by Jiang is in its early evolutionary stages.

The evolutionary progression of the centromeres, Jiang suggests, may be analogous to how temperate forests evolve from more diverse ecosystems to climax forests where a single species of tree dominates. In the rice centromere, it may be that evolution has not yet purged active genes to be replaced by the long and repetitive blocks of DNA that mark the centromeres of most organisms.

In addition to Jiang and Buell, co authors of the Nature Genetics paper include lead author Kiyotaka Nagaki, also of UW-Madison; Zhukuan Cheng of the Chinese Academy of Sciences; Shu Ouyang, Mary Kim and Kristine M. Jones of the Institute for Genomic Research; and Paul B. Talbert and Steven Henikoff of the Howard Hughes Medical Institute at the Fred Hutchinson Cancer Research Center on Seattle.


- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>