Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists crack secrets of nature’s super glue

12.01.2004


Researchers have discovered that iron in seawater is the key binding agent in the super-strong glues of the common blue mussel, Mytilus edulis. This is the first time researchers have determined that a metal such as iron is critical to forming an amorphous, biological material.


Common blue mussel (Mytilus edulis) hangs tough after a night adhering to otherwise "non-stick" Teflon®.
Credit: Jonathan Wilker of Purdue University, NSF



In addition to using the knowledge to develop safer alternatives for surgical and household glues, the researchers are looking at how to combat the glue to prevent damage to shipping vessels and the accidental transport of invasive species, such as the zebra mussel that has ravaged the midwestern United States.

National Science Foundation CAREER awardee Jonathan Wilker, Mary Sever and their colleagues at Purdue University announce their discovery in the Jan. 12 issue of Angewandte Chemie.


En route to crafting synthetic versions of the glue, the researchers discovered that bivalves extract the metal iron from the surrounding seawater and use it to join proteins together, linking the fibrous molecules into a strong, adhesive mesh. The 800 mussels in Wilker’s laboratory have an uncanny ability to stick to almost anything, even Teflon®.

Comment from Wilker regarding research:

"Mussel glues present the first identified case in which transition metals are essential to the formation of a non crystalline biological material," says NSF CAREER awardee Jonathan Wilker of Purdue University.

"We are curious as to whether or not this newly discovered, metal- mediated protein cross-linking mechanism of material formation is a prevalent theme in biology. We will be exploring systems such as barnacle cement, kelp glue and oyster cement to see how other biomaterials are produced," says NSF CAREER awardee Jonathan Wilker of Purdue University.

"The biological origin of this glue and the ability to stick to nearly all surfaces invite applications such as the development of surgical adhesives," says NSF CAREER awardee Jonathan Wilker of Purdue University.

"Understanding how marine glues are formed could be key to developing surfaces and coatings to prevent adhesion processes. Current antifouling paints rely upon releasing copper into surrounding waters, thereby killing barnacles in their larval state. We are hoping our results will help make antifouling paints that do not require the release of toxins into the marine environment," says NSF CAREER awardee Jonathan Wilker of Purdue University.

NSF comments regarding the research discovery and the Wilker group:

"It appears that the strength, sticking power and endurance of these extraordinary biological materials may derive from inorganic chemistry," says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

"Proteins often rely on metal ions to tie them together and provide stability, but this is the first time that a transition metal ion has been determined to be an integral part of a biological material," says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

"The research wonderfully illustrates the potential for metal ions to strengthen materials by cross-linking polymer chains. More important to researchers is the tantalizing suggestion that the remarkable adhesive properties of these biological glues lie in an iron-dependent oxidation to radicals," says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

"This discovery could lead to the creation of unusual new materials with designed plasticity, strength and adhesiveness for household, structural and biological uses. Perhaps, these properties could even be made dependent upon electrochemical potential thereby creating new vistas for electronic materials," says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

Additional Resources:

NSF chemistry expert and program officer: Mike Clarke, 703-292- 4967, mclarke@nsf.gov
Principal Investigator: Jonathan Wilker, 765-496-3382, wilker@purdue.edu
Purdue University Media Officer: Chad Boutin, 765-494-2081, cboutin@purdue.edu

Josh Chamot | NSF
Further information:
http://www.chem.purdue.edu/wilker/
http://news.uns.purdue.edu
http://www.nsf.gov/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>