Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find mechanism bacteria use to target specific chemical contaminants

09.12.2003


New insight into the molecular-level interactions between bacteria and minerals may some day help scientists design bacteria with the express purpose of cleaning up toxic waste.



Hazardous waste experts know that certain bacteria can essentially eat toxic waste, reducing it to less noxious substances. But until now they didn’t know what mechanisms allowed these bacteria to devour chemicals.

A new study by Ohio State and Virginia Tech universities showed how a particular bacteria uses iron oxide, or rust, to breathe. The researchers found that key changes in the expression of genes in Shewanella oneidensis enable the microbe to recognize and bind specifically to iron oxides.


This finding could help researchers manipulate the bacteria to make it more effective in cleaning up petroleum products at toxic waste sites.

"In some situations, S. oneidensis is capable of using organic contaminants similar to oil as a source of energy,” said Steven Lower, a study co-author and an assistant professor of geological sciences at Ohio State. "Petroleum products are one of the main chemicals found in toxic waste dumps.

“Also, there’s little to no oxygen in these underground sites, so the bacteria have to adapt to anaerobic conditions,” said Lower, who is also a professor in the school of natural resources. This essentially means that in order for bacteria to grow and degrade an organic contaminate, it must be able to ‘breathe’ on something other than oxygen.”

The researchers hope to one day be able to tailor bacteria so it could target a specific contaminant.

Lower pointed out that one problem with using microbes to help clean up contaminated sites is getting the bacteria to the site and then ensuring that it remains in place.

Knowing which gene the bacteria express in an anaerobic environment may enable researchers to genetically manipulate the microbes so they prefer iron oxides only in the presence of oil and related waste products.

Lower conducted the work with Brian Lower and Michael Hochella, both with the department of geosciences at Virginia Tech. The results were presented December 8 at the fall meeting of the American Geophysical Union in San Francisco.

The researchers used a relatively new technique called biological force microscopy to measure the molecular forces between S. oneidensis and a crystal of iron oxide. Force microscopy lets scientists measure the minutest interactions between the surfaces of two substances. Such microscopes use an ultra-sensitive probe that can detect attractive and repulsive forces.

The researchers placed a small amount of S. oneidensis on the probe, which also acts as a cantilever, and a sample of iron oxide near the probe. A beam of laser light was then reflected off of the probe to determine if the bacteria-covered cantilever was bending toward or away from the iron oxide sample, and by how much.

“In principle it’s a very simple measurement that tells us whether or not a bacterium is attracted to an inorganic substance, and also gives us a precise measurement of that attraction," Lower said.

He and his colleagues also analyzed gene expression patterns in S. oneidensis to learn if different genes were expressed depending on what the bacteria uses to breathe.

Indeed, the researchers found that S. oneidensis produces two specific proteins under anaerobic conditions, which allow the microbes to bind to and breathe in, and therefore reduce, iron contained in the structure of a solid mineral.

“We’ve known for decades that this bacteria can use dissolved iron to breathe, but until now we really didn’t know how they could do this in nature, where most of the iron is embedded in the crystal structure of a solid mineral," Lower said. "This interaction is probably billions of years old, and may represent one of the first globally significant mechanisms for oxidizing organic matter to carbon dioxide."

This work was supported by grants from the U.S. Department of Energy and the National Science Foundation.


Contact: Steven Lower, (614) 292 1571; Lower.9@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Steven Lower | Ohio State University
Further information:
http://researchnews.osu.edu/archive/shewagu.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>