Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find mechanism bacteria use to target specific chemical contaminants

09.12.2003


New insight into the molecular-level interactions between bacteria and minerals may some day help scientists design bacteria with the express purpose of cleaning up toxic waste.



Hazardous waste experts know that certain bacteria can essentially eat toxic waste, reducing it to less noxious substances. But until now they didn’t know what mechanisms allowed these bacteria to devour chemicals.

A new study by Ohio State and Virginia Tech universities showed how a particular bacteria uses iron oxide, or rust, to breathe. The researchers found that key changes in the expression of genes in Shewanella oneidensis enable the microbe to recognize and bind specifically to iron oxides.


This finding could help researchers manipulate the bacteria to make it more effective in cleaning up petroleum products at toxic waste sites.

"In some situations, S. oneidensis is capable of using organic contaminants similar to oil as a source of energy,” said Steven Lower, a study co-author and an assistant professor of geological sciences at Ohio State. "Petroleum products are one of the main chemicals found in toxic waste dumps.

“Also, there’s little to no oxygen in these underground sites, so the bacteria have to adapt to anaerobic conditions,” said Lower, who is also a professor in the school of natural resources. This essentially means that in order for bacteria to grow and degrade an organic contaminate, it must be able to ‘breathe’ on something other than oxygen.”

The researchers hope to one day be able to tailor bacteria so it could target a specific contaminant.

Lower pointed out that one problem with using microbes to help clean up contaminated sites is getting the bacteria to the site and then ensuring that it remains in place.

Knowing which gene the bacteria express in an anaerobic environment may enable researchers to genetically manipulate the microbes so they prefer iron oxides only in the presence of oil and related waste products.

Lower conducted the work with Brian Lower and Michael Hochella, both with the department of geosciences at Virginia Tech. The results were presented December 8 at the fall meeting of the American Geophysical Union in San Francisco.

The researchers used a relatively new technique called biological force microscopy to measure the molecular forces between S. oneidensis and a crystal of iron oxide. Force microscopy lets scientists measure the minutest interactions between the surfaces of two substances. Such microscopes use an ultra-sensitive probe that can detect attractive and repulsive forces.

The researchers placed a small amount of S. oneidensis on the probe, which also acts as a cantilever, and a sample of iron oxide near the probe. A beam of laser light was then reflected off of the probe to determine if the bacteria-covered cantilever was bending toward or away from the iron oxide sample, and by how much.

“In principle it’s a very simple measurement that tells us whether or not a bacterium is attracted to an inorganic substance, and also gives us a precise measurement of that attraction," Lower said.

He and his colleagues also analyzed gene expression patterns in S. oneidensis to learn if different genes were expressed depending on what the bacteria uses to breathe.

Indeed, the researchers found that S. oneidensis produces two specific proteins under anaerobic conditions, which allow the microbes to bind to and breathe in, and therefore reduce, iron contained in the structure of a solid mineral.

“We’ve known for decades that this bacteria can use dissolved iron to breathe, but until now we really didn’t know how they could do this in nature, where most of the iron is embedded in the crystal structure of a solid mineral," Lower said. "This interaction is probably billions of years old, and may represent one of the first globally significant mechanisms for oxidizing organic matter to carbon dioxide."

This work was supported by grants from the U.S. Department of Energy and the National Science Foundation.


Contact: Steven Lower, (614) 292 1571; Lower.9@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Steven Lower | Ohio State University
Further information:
http://researchnews.osu.edu/archive/shewagu.htm

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>