Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cumbre Inc. and collaborator publish on a novel bacterial RNA polymerase inhibitor

24.10.2003


Cumbre Inc. and University of Wisconsin-Madison research collaborator publish data on a new class of bacterial RNA polymerase inhibitor



Cumbre Inc., a privately held biopharmaceutical company, announced today the publication of a research paper in the October 24, 2003 issue of Science entitled "A new class of bacterial RNA polymerase inhibitor affects nucleotide addition." The paper describes the identification and characterization of the novel "CBR703" class of inhibitors through combined efforts in biochemistry, genetics and structural modeling with contributions from both Cumbre researchers and scientists from the University of Wisconsin-Madison.

Co-author Robert Landick, Ph.D., a Professor of Bacteriology at the University of Wisconsin-Madison, whose laboratory is primarily focused on studies of regulatory mechanisms that control gene expression in bacteria, commented, "The Cumbre RNA polymerase inhibitors are a major breakthrough. They give us a powerful new tool to study the mechanism of the central enzyme in the process of gene expression. At least as importantly, they also hold great promise for the development of new antibiotics that target bacterial pathogens, which is now a high-priority need in both medicine and bio-defense."


A. Simon Lynch, Ph.D., Cumbre’s Director of Research, added "We are excited about the development potential of the CBR703 series, and are pleased to be able to contribute to the RNA polymerase research community through provision of a novel experimental tool. We hope that ongoing efforts to determine high resolution X-ray structures of RNA polymerase-inhibitor complexes will both aid Cumbre’s antibiotic development program and yield additional insight regarding the fundamental processes underlying the transcription elongation cycle."

Cumbre, a privately held biopharmaceutical company founded in February 2001, is solely focused on the discovery, development, and commercialization of novel antibacterial therapeutics. Discovery programs combine unique target-directed biochemical screens with a novel cell-based approach. The most advanced development program is directed toward the optimization of a novel compound series for activity against pathogenic bacteria growing in the biofilm state.

Robert England | EurekAlert!
Further information:
http://www.cumbre.biz

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>