Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence That Neurons Prune Only "Twigs" to Rewire Themselves

23.10.2003


By using a laser microscope to spy on individual nerve cells in living mice, researchers have discovered that neurons’ wiring remain largely stable, providing a solid scaffold to accommodate the challenges in their environment. Specifically, the scientists found that the neuronal branches called "dendrites" remain largely unchanged in the highly active olfactory processing region of the mouse brain. Such evidence suggest that dendrites in the adult brain form a stable background even in the face of ongoing changes that form part of everyday experience.


Lawrence C. Katz, PhD



Besides providing a better basic understanding of the dynamic processes of brain rewiring, the researchers believe their findings might yield insights into such disorders as epilepsy and Alzheimer’s disease, which are marked by aberrant neural circuitry.

Dendrites are the branches of neurons that support the multitude of interconnections by which one neuron triggers a nerve impulse in its neighbors in the intricate neural pathways of the brain.


The research was reported in the November 2003 issue of the journal Nature Neuroscience by Howard Hughes Medical Institute investigator Lawrence Katz, Ph.D., and colleague Adi Mizrahi, both at the Duke University Medical Center.

"The brain faces two challenges in maintaining its functionality in a changing environment," said Katz. "One is to remain stable enough so that the basic things we need to do to interpret the world remain consistent. And the other is to continually adapt to the changing environment, which places a high premium on the ability to alter neural circuitry."

The brain is known to undergo large-scale wiring during embryonic development after such drastic events as a stroke or loss of a limb. However, said Katz, a central question in neurobiology is whether such dendritic alterations take place during the formation of long-term memories.

To explore the nature of such rewiring, Mizrahi and Katz studied neurons in the neural structure called the olfactory bulb -- the collection of neurons that represent the initial processing stage for information from odor sensing receptors in the nose.

"The olfactory bulb is one of only two areas of the brain where new neurons are being generated throughout life," said Katz. "Neurons in the olfactory bulb are constantly losing synapses linked to sensory cells that are dying and gaining new ones connected to new sensory cells." Thus, he said, detailed observation of those neurons should yield a clear look at neurons in the process of rewiring during ordinary experience.

The scientists used a laser microscopy technique that enabled them to watch changes in specific neurons genetically tagged with a fluorescent protein, as the mice were presented with changes in their environment. The transgenic mice were developed by Duke neurobiologist Guoping Feng, Ph.D., and his colleagues.

"Importantly, this technique enabled us to look in real time at the changes in a single neuron in the same animal; not at populations of neurons and not at different animals," said Katz. "We could follow over time how dendrites responded to ongoing change." In initial studies, the researchers found only subtle changes in the neurons.

"The changes bordered on the imperceptible -- like a tree that lost or gained only a few twigs over time," said Katz. "It wasn’t what we initially thought, that the neurons would be like rose bushes in spring, in which a tremendous amount of dendritic structure would be gained." Even when the scientists placed the mice in an enriched "Disneyland" of structures and smells to explore, they saw few changes in dendritic structure. This, despite the fact that other researchers had found that manipulating the odor environment drastically increased turnover of neurons in the olfactory bulb. Nor did the scientists see significant changes when they taught the animals to seek out a particular odor to gain a reward.

The only way they could induce major changes, they found was to use the molecular "sledgehammer" of a drug known to make neurons hyperactive, "so we knew they had the capacity to undergo change," said Katz.

"We’ve concluded from these findings that the overall theme of this area of the brain is stability, and that these dendrites are not undergoing large-scale changes under natural conditions, even in response to changes in their environment," said Katz. "My own view is that there is a large backbone of stability in these areas and relatively low levels of plasticity, despite the fact that new neurons are being constantly generated," said Katz.

According to Katz ongoing studies are using the combination of laser microscopy and cell tagging to study plasticity in other regions of the brain, particularly the central site of learning, the hippocampus.

Such studies could yield significant insights into disorders that involve brain rewiring, he said. "Dendritic degeneration is a hallmark of Alzheimer’s disease, and dendritic changes are known to occur in epilepsy," said Katz. "So, understanding what is normal and what is pathological -- and the mechanisms that produce such changes -- could offer insights into these diseases." For example, he said, by crossing mouse strains that show epilepsy with the fluorescently tagged strain, it would be possible to study in detail alterations in dendritic wiring that might contribute to the disorder.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7129
http://www.neuro.duke.edu/Faculty/Katz.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>