Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence That Neurons Prune Only "Twigs" to Rewire Themselves

23.10.2003


By using a laser microscope to spy on individual nerve cells in living mice, researchers have discovered that neurons’ wiring remain largely stable, providing a solid scaffold to accommodate the challenges in their environment. Specifically, the scientists found that the neuronal branches called "dendrites" remain largely unchanged in the highly active olfactory processing region of the mouse brain. Such evidence suggest that dendrites in the adult brain form a stable background even in the face of ongoing changes that form part of everyday experience.


Lawrence C. Katz, PhD



Besides providing a better basic understanding of the dynamic processes of brain rewiring, the researchers believe their findings might yield insights into such disorders as epilepsy and Alzheimer’s disease, which are marked by aberrant neural circuitry.

Dendrites are the branches of neurons that support the multitude of interconnections by which one neuron triggers a nerve impulse in its neighbors in the intricate neural pathways of the brain.


The research was reported in the November 2003 issue of the journal Nature Neuroscience by Howard Hughes Medical Institute investigator Lawrence Katz, Ph.D., and colleague Adi Mizrahi, both at the Duke University Medical Center.

"The brain faces two challenges in maintaining its functionality in a changing environment," said Katz. "One is to remain stable enough so that the basic things we need to do to interpret the world remain consistent. And the other is to continually adapt to the changing environment, which places a high premium on the ability to alter neural circuitry."

The brain is known to undergo large-scale wiring during embryonic development after such drastic events as a stroke or loss of a limb. However, said Katz, a central question in neurobiology is whether such dendritic alterations take place during the formation of long-term memories.

To explore the nature of such rewiring, Mizrahi and Katz studied neurons in the neural structure called the olfactory bulb -- the collection of neurons that represent the initial processing stage for information from odor sensing receptors in the nose.

"The olfactory bulb is one of only two areas of the brain where new neurons are being generated throughout life," said Katz. "Neurons in the olfactory bulb are constantly losing synapses linked to sensory cells that are dying and gaining new ones connected to new sensory cells." Thus, he said, detailed observation of those neurons should yield a clear look at neurons in the process of rewiring during ordinary experience.

The scientists used a laser microscopy technique that enabled them to watch changes in specific neurons genetically tagged with a fluorescent protein, as the mice were presented with changes in their environment. The transgenic mice were developed by Duke neurobiologist Guoping Feng, Ph.D., and his colleagues.

"Importantly, this technique enabled us to look in real time at the changes in a single neuron in the same animal; not at populations of neurons and not at different animals," said Katz. "We could follow over time how dendrites responded to ongoing change." In initial studies, the researchers found only subtle changes in the neurons.

"The changes bordered on the imperceptible -- like a tree that lost or gained only a few twigs over time," said Katz. "It wasn’t what we initially thought, that the neurons would be like rose bushes in spring, in which a tremendous amount of dendritic structure would be gained." Even when the scientists placed the mice in an enriched "Disneyland" of structures and smells to explore, they saw few changes in dendritic structure. This, despite the fact that other researchers had found that manipulating the odor environment drastically increased turnover of neurons in the olfactory bulb. Nor did the scientists see significant changes when they taught the animals to seek out a particular odor to gain a reward.

The only way they could induce major changes, they found was to use the molecular "sledgehammer" of a drug known to make neurons hyperactive, "so we knew they had the capacity to undergo change," said Katz.

"We’ve concluded from these findings that the overall theme of this area of the brain is stability, and that these dendrites are not undergoing large-scale changes under natural conditions, even in response to changes in their environment," said Katz. "My own view is that there is a large backbone of stability in these areas and relatively low levels of plasticity, despite the fact that new neurons are being constantly generated," said Katz.

According to Katz ongoing studies are using the combination of laser microscopy and cell tagging to study plasticity in other regions of the brain, particularly the central site of learning, the hippocampus.

Such studies could yield significant insights into disorders that involve brain rewiring, he said. "Dendritic degeneration is a hallmark of Alzheimer’s disease, and dendritic changes are known to occur in epilepsy," said Katz. "So, understanding what is normal and what is pathological -- and the mechanisms that produce such changes -- could offer insights into these diseases." For example, he said, by crossing mouse strains that show epilepsy with the fluorescently tagged strain, it would be possible to study in detail alterations in dendritic wiring that might contribute to the disorder.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7129
http://www.neuro.duke.edu/Faculty/Katz.htm

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>