Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence That Neurons Prune Only "Twigs" to Rewire Themselves

23.10.2003


By using a laser microscope to spy on individual nerve cells in living mice, researchers have discovered that neurons’ wiring remain largely stable, providing a solid scaffold to accommodate the challenges in their environment. Specifically, the scientists found that the neuronal branches called "dendrites" remain largely unchanged in the highly active olfactory processing region of the mouse brain. Such evidence suggest that dendrites in the adult brain form a stable background even in the face of ongoing changes that form part of everyday experience.


Lawrence C. Katz, PhD



Besides providing a better basic understanding of the dynamic processes of brain rewiring, the researchers believe their findings might yield insights into such disorders as epilepsy and Alzheimer’s disease, which are marked by aberrant neural circuitry.

Dendrites are the branches of neurons that support the multitude of interconnections by which one neuron triggers a nerve impulse in its neighbors in the intricate neural pathways of the brain.


The research was reported in the November 2003 issue of the journal Nature Neuroscience by Howard Hughes Medical Institute investigator Lawrence Katz, Ph.D., and colleague Adi Mizrahi, both at the Duke University Medical Center.

"The brain faces two challenges in maintaining its functionality in a changing environment," said Katz. "One is to remain stable enough so that the basic things we need to do to interpret the world remain consistent. And the other is to continually adapt to the changing environment, which places a high premium on the ability to alter neural circuitry."

The brain is known to undergo large-scale wiring during embryonic development after such drastic events as a stroke or loss of a limb. However, said Katz, a central question in neurobiology is whether such dendritic alterations take place during the formation of long-term memories.

To explore the nature of such rewiring, Mizrahi and Katz studied neurons in the neural structure called the olfactory bulb -- the collection of neurons that represent the initial processing stage for information from odor sensing receptors in the nose.

"The olfactory bulb is one of only two areas of the brain where new neurons are being generated throughout life," said Katz. "Neurons in the olfactory bulb are constantly losing synapses linked to sensory cells that are dying and gaining new ones connected to new sensory cells." Thus, he said, detailed observation of those neurons should yield a clear look at neurons in the process of rewiring during ordinary experience.

The scientists used a laser microscopy technique that enabled them to watch changes in specific neurons genetically tagged with a fluorescent protein, as the mice were presented with changes in their environment. The transgenic mice were developed by Duke neurobiologist Guoping Feng, Ph.D., and his colleagues.

"Importantly, this technique enabled us to look in real time at the changes in a single neuron in the same animal; not at populations of neurons and not at different animals," said Katz. "We could follow over time how dendrites responded to ongoing change." In initial studies, the researchers found only subtle changes in the neurons.

"The changes bordered on the imperceptible -- like a tree that lost or gained only a few twigs over time," said Katz. "It wasn’t what we initially thought, that the neurons would be like rose bushes in spring, in which a tremendous amount of dendritic structure would be gained." Even when the scientists placed the mice in an enriched "Disneyland" of structures and smells to explore, they saw few changes in dendritic structure. This, despite the fact that other researchers had found that manipulating the odor environment drastically increased turnover of neurons in the olfactory bulb. Nor did the scientists see significant changes when they taught the animals to seek out a particular odor to gain a reward.

The only way they could induce major changes, they found was to use the molecular "sledgehammer" of a drug known to make neurons hyperactive, "so we knew they had the capacity to undergo change," said Katz.

"We’ve concluded from these findings that the overall theme of this area of the brain is stability, and that these dendrites are not undergoing large-scale changes under natural conditions, even in response to changes in their environment," said Katz. "My own view is that there is a large backbone of stability in these areas and relatively low levels of plasticity, despite the fact that new neurons are being constantly generated," said Katz.

According to Katz ongoing studies are using the combination of laser microscopy and cell tagging to study plasticity in other regions of the brain, particularly the central site of learning, the hippocampus.

Such studies could yield significant insights into disorders that involve brain rewiring, he said. "Dendritic degeneration is a hallmark of Alzheimer’s disease, and dendritic changes are known to occur in epilepsy," said Katz. "So, understanding what is normal and what is pathological -- and the mechanisms that produce such changes -- could offer insights into these diseases." For example, he said, by crossing mouse strains that show epilepsy with the fluorescently tagged strain, it would be possible to study in detail alterations in dendritic wiring that might contribute to the disorder.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7129
http://www.neuro.duke.edu/Faculty/Katz.htm

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>