Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retroviral protein triggers proliferation of immune cells

23.10.2003


Scientists here have found that a protein in the retrovirus known as human T-cell lymphotropic virus type 1 (HTLV-1) can cause immune cells to divide and proliferate, helping the virus spread through the body.


Michael Lairmore



The protein, known as p12, was formerly thought to be unimportant during infection, causing scientists to regard it as a nonessential “accessory gene.”

This new study, however, shows that the protein forces infected cells to produce interleukin 2 (IL-2), a substance that stimulates the growth and proliferation of immune cells known as T lymphocytes, or T cells, which are the virus’s chief target. The study was published in the Oct. 15 issue of the Journal of Virology.


“Our findings help explain why lymphocytes divide and proliferate in people following HTLV-1 infection,” says lead investigator Michael D. Lairmore, professor and chair of veterinary biosciences, professor of molecular virology and associate director for basic sciences at the Ohio State University Comprehensive Cancer Center. “The findings also support the view that this virus replicates mainly by causing infected cells to divide and proliferate rather than by generating more virus particles.”

The study provides insight into the biology of HTLV-1 and the changes lymphocytes undergo as they become cancerous. The findings also may lead to safer, more effective drugs to treat the leukemias, lymphoma, and autoimmune-like diseases caused by the virus.

HTLV-1 infects 15 to 25 million people worldwide, particularly in Japan and in the Caribbean region. It specifically attacks immune cells known as CD4 lymphocytes, where it inserts its genome, or genetic material, permanently into a chromosome. In some people the virus causes adult T-cell leukemia/lymphoma, a cancer that responds poorly to treatment and that can cause death within six months of diagnosis. In others, it causes crippling and painful autoimmune-like disorders.

Lairmore and a team of colleagues tested the function of p12 in both laboratory-grown lymphocytes known as Jurkat T cells, and in normal human T lymphocytes, known as peripheral blood mononuclear lymphocytes (PBMCs). Jurkat cells are commonly used for immunological studies, while PBMCs contain HTLV-1’s normal target cell.

Copies of the p12 gene were transferred into both cell types. Then the genes were activated as they would be during HTLV-1 infection, causing the cells to produce p12 and IL-2. After several days, the cultured cells produced twice the level of IL-2 compared to control cells, and the normal lymphocytes produced levels six-fold higher than controls.

“A similar two-to-six fold increase in IL-2 production by infected T cells during normal HTLV-1 infection in the body would lead to a significant increase in lymphocyte numbers in the blood,” says Lairmore.

“Overall, our evidence suggests that this protein plays a vital role in early HTLV-1 infection.”


Contact: Darrell E. Ward, (614) 293-3737; Ward-15@medctr.osu.edu

Darrell E. Ward | OSU
Further information:
http://researchnews.osu.edu/archive/htlvil2.htm
http://www.acs.ohio-state.edu/units/research/

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>