Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retroviral protein triggers proliferation of immune cells

23.10.2003


Scientists here have found that a protein in the retrovirus known as human T-cell lymphotropic virus type 1 (HTLV-1) can cause immune cells to divide and proliferate, helping the virus spread through the body.


Michael Lairmore



The protein, known as p12, was formerly thought to be unimportant during infection, causing scientists to regard it as a nonessential “accessory gene.”

This new study, however, shows that the protein forces infected cells to produce interleukin 2 (IL-2), a substance that stimulates the growth and proliferation of immune cells known as T lymphocytes, or T cells, which are the virus’s chief target. The study was published in the Oct. 15 issue of the Journal of Virology.


“Our findings help explain why lymphocytes divide and proliferate in people following HTLV-1 infection,” says lead investigator Michael D. Lairmore, professor and chair of veterinary biosciences, professor of molecular virology and associate director for basic sciences at the Ohio State University Comprehensive Cancer Center. “The findings also support the view that this virus replicates mainly by causing infected cells to divide and proliferate rather than by generating more virus particles.”

The study provides insight into the biology of HTLV-1 and the changes lymphocytes undergo as they become cancerous. The findings also may lead to safer, more effective drugs to treat the leukemias, lymphoma, and autoimmune-like diseases caused by the virus.

HTLV-1 infects 15 to 25 million people worldwide, particularly in Japan and in the Caribbean region. It specifically attacks immune cells known as CD4 lymphocytes, where it inserts its genome, or genetic material, permanently into a chromosome. In some people the virus causes adult T-cell leukemia/lymphoma, a cancer that responds poorly to treatment and that can cause death within six months of diagnosis. In others, it causes crippling and painful autoimmune-like disorders.

Lairmore and a team of colleagues tested the function of p12 in both laboratory-grown lymphocytes known as Jurkat T cells, and in normal human T lymphocytes, known as peripheral blood mononuclear lymphocytes (PBMCs). Jurkat cells are commonly used for immunological studies, while PBMCs contain HTLV-1’s normal target cell.

Copies of the p12 gene were transferred into both cell types. Then the genes were activated as they would be during HTLV-1 infection, causing the cells to produce p12 and IL-2. After several days, the cultured cells produced twice the level of IL-2 compared to control cells, and the normal lymphocytes produced levels six-fold higher than controls.

“A similar two-to-six fold increase in IL-2 production by infected T cells during normal HTLV-1 infection in the body would lead to a significant increase in lymphocyte numbers in the blood,” says Lairmore.

“Overall, our evidence suggests that this protein plays a vital role in early HTLV-1 infection.”


Contact: Darrell E. Ward, (614) 293-3737; Ward-15@medctr.osu.edu

Darrell E. Ward | OSU
Further information:
http://researchnews.osu.edu/archive/htlvil2.htm
http://www.acs.ohio-state.edu/units/research/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>