Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC scientists discover plant gene that promotes production of ozone-destroying methyl halides

14.10.2003


Lars Østergaard with Arabidopsis plants
Credit: UCSD


A team of University of California scientists has identified a gene that controls the production by terrestrial plants of methyl halides, gaseous compounds that contribute to the destruction of ozone in the stratosphere.

The discovery of the gene, detailed in the October 14 issue of the journal Current Biology, is important because it now provides scientists with a genetic tool with which to probe how and why plants produce methyl halides. The identification of the gene should also help researchers determine the extent to which plants emit methyl halides into the atmosphere and why certain plants increase their methyl halide emissions in high salt environments.

The team of plant geneticists at UC San Diego and atmospheric chemists at UC Irvine dubbed the gene HOL for “Harmless to Ozone Layer” because disruption of the gene largely eliminates methyl halide production. The researchers discovered the gene in Arabidopsis, a mustard plant in the cabbage family that is used commonly in genetic studies.



The researchers also found closely related variants, or homologues, of the HOL gene in the genetic databases of rice, cotton, corn and barley. Homologues had been identified separately in cabbage and a salt marsh plant by geneticists at the University of Montreal and the University of Illinois, Urbana-Champaign, respectively. These discoveries, taken together, indicate that the gene is likely a common trait of all terrestrial plants. However, the scientists emphasize that the ubiquity of the HOL gene in plants and their results cannot be used to suggest that plants are responsible for the depletion of the earth’s ozone layer.

“Stratospheric ozone depletion is a human-created problem,” says Robert C. Rhew, an assistant professor of geography at UC Berkeley who noted that most of the bromine and chlorine that reach the stratosphere are produced by humans. “Methyl halides are tricky compounds to study because they emanate from both natural and human sources, and our study addresses the current pressing question of how and why these methyl halides are produced.” Rhew conducted the study while a postdoctoral researcher in the laboratory of Eric S. Saltzman, a professor of earth system science at UC Irvine who is also a co-author.

“The take-home message of this study is that all plants probably have this gene,” says Lars Østergaard, a postdoctoral researcher in the laboratory of Martin Yanofsky, a UCSD biology professor and a co-author. “Now we can determine more precisely the impact plants have on the production of methyl halides and whether it might be appropriate or feasible to engineer crops to minimize the expression of this gene.”

Østergaard and Yanofsky began their collaboration with the UC Irvine chemists several years ago, when Rhew, a former graduate student at UCSD’s Scripps Institution of Oceanography working on identifying natural sources of methyl halides, wondered if a plant gene could be found that controlled methyl halide production.

Human-produced compounds that release chlorine and bromine into the atmosphere—such as chlorofluorocarbons (CFCs), halons and industrially produced methyl bromide—have long been identified as stratospheric ozone depleting compounds and are gradually being phased out under the 1987 Montreal Protocol in an effort to reduce the halogen load in the atmosphere.

But a number of studies in recent years have found that some crops also contribute to the atmosphere a small fraction of ozone-reacting methyl halides, such as methyl chloride, methyl iodide and methyl bromide—a compound that is manufactured to be used in agriculture as a soil fumigant, but which will be phased out completely by the Montreal Protocol by 2005.

One such study published in Science three years ago by a UC Irvine team estimated, from measurements of a rice paddy over a period of two years, that rice farming around the world contributes 1 percent of the total methyl bromide and 5 percent of the methyl iodide emissions.

“The major industrial sources of these halides increasingly are being regulated, but we still must uncover their natural sources,” says UCI Chancellor Ralph J. Cicerone, a leading expert on ozone depletion who headed the Science study. “We only know where half of the methyl chloride and two-thirds of the methyl bromide are coming from. The identification of the HOL gene is a critical step forward in allowing us to determine more precisely the contribution of plants to these unknown, natural sources of methyl halides.”

Another study, published by Rhew while a graduate student at Scripps, estimated that 10 percent of the natural global emissions of methyl chloride and methyl bromide could be coming from salt marshes, which make up less than a tenth of one percent of the global terrestrial surface area. Other studies have identified biomass burning, leaded gasoline combustion, fungi and the oceans as primary sources of methyl halides.

Scientists have discovered that as the concentration of salts, or halides, increase in the soil or water, plants tend to release more of those methyl halides into the atmosphere. This suggests that the current push to generate new varieties of salt-tolerant crops to increase food production may have the unintended effect of increasing methyl halide emissions.

The University of California team discovered that the HOL gene controls the production of an enzyme that catalyzes the production in plants of methyl bromide, methyl chloride and methyl iodide. The scientists found that the addition of bromide salts to a substrate on which their Arabidopsis plants grew led to a more than a thousand-fold increase in methyl bromide. But plants with a mutant, non-working copy of the HOL gene, the scientists discovered, produced only 15 percent of the methyl chloride, 4 percent of the methyl bromide and 1 percent of the methyl iodide of normal, wild-type plants.

The UC scientists say the enzyme produced by the HOL gene may function to metabolize plant compounds that are thought to serve as insect repellents, suggesting that plants may have initially evolved the biochemical pathway that produces methyl halide emissions to ward off insects. This may provide an additional challenge to scientists seeking to genetically engineer salt tolerant crops that can minimize methyl halide production without losing their natural insect resistance.

“By studying plants with normal and mutant copies of this gene,” says Yanofsky of UCSD, “we should be able to address the question of whether the gene is important for pathogen resistance.”

The study was supported by grants from the National Science Foundation and NOAA’s Postdoctoral Program in Climate and Global Change.

Kim McDonald | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/mchalides.htm
http://today.uci.edu/news/release_detail.asp?key=874

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>