Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For quantum confinement, size matters, but so does shape

14.10.2003


Size matters, but so does shape, at least in the world of semiconducting nanocrystals, report chemists at Washington University in St. Louis.


Washington University chemists have shown that the shape of nanowires such as this one can affect its electronic and optical properties.
Courtesy photo


Heng Yu and William Buhro



Their findings, published in the August 2003 issue of Nature Materials, demonstrate experimentally that the shape of a semiconductor nanocrystal can affect its electronic and optical properties. The study, led by graduate student Heng Yu and William E. Buhro, Ph. D., professor of chemistry in Arts & Science, is the first comprehensive comparison relating shape to the phenomenon known as "quantum confinement."

Quantum confinement describes how the electronic properties - the organization of energy levels into which electrons can climb or fall - and optical properties change when the material sampled is in sufficiently small amounts - typically 10 nanometers or less. Specifically, the phenomenon results from electrons and holes being squeezed into a dimension that approaches a critical quantum measurement, called the exciton Bohr radius. Holes are the positively-charge species left over when an electron vacates its position in a crystal.


Since the late 1960s, scientists have theorized that shape, as well as size, would influence the character and magnitude of quantum confinement. However, according to Buhro, experimental examples of systems that differed only in the geometric dimensionality of confinement were not available prior to his current study.

Scientists previously have developed terms to describe nanocrystals according to their shapes. A quantum well is a thin film of macroscopic width and length -- large enough to be visible to the naked eye - but only a few nanometers in thickness. Thus, it is said to be confined in one dimension. Quantum wires, which are confined in two dimensions, can be thought of as nanometer-sized cylinders that can measure up to several microns in length. Finally, the quantum dot is a unidirectional nanometer-sized sphere, confined in all three dimensions.

The Nature Materials paper reports two significant findings. First, the group devised a novel synthesis that created indium phosphide nanowires small enough to be considered quantum wires. Second, they quantified the band gap — that is, the amount of energy that an electron must acquire in order to conduct electricity in a semiconductor — for their quantum wires and compared them to others’ published band gaps for indium phosphide quantum dots. What they found revealed exactly how the change from cylindrical wire to spherical dot influenced the energy gap.

"By developing a synthesis of narrowly dispersed quantum wires with diameters within the strong confinement regime, we have been able to provide the first experimental confirmation of the theoretical predictions regarding two-dimensional vs. three-dimensional confinement," said Buhro. "Furthermore, we have provided a simple criterion that experimentalists can use to determine if semiconductor nanowires are behaving as true quantum wires."

Buhro and his research group began synthesizing semiconducting materials in the mid-1990s using a catalytic growth mechanism that they discovered. Solution-Liquid-Solid growth (SLS) enables semiconductors to be grown at low temperature, in solution and in a flask—ideal from a chemist’s perspective. But despite these advantages, Mother Nature, not the researchers, controlled the size of the nanomaterials.

In 1999 Yu and Buhro set out to add an element of size-control to SLS growth. A couple years later, they literally struck gold — gold seeds, that is. Yu’s experiments demonstrated that gold nanoparticles could seed the growth of other low melting point metal nanoparticles, which in turn could catalyze nanowire growth. This discovery led to a generalized growth strategy for numerous size-controlled nanomaterials that both they and other researchers now synthesize and study.

The Nature Materials paper focused on "the synthesis of diameter-controlled indium phosphide nanowires having sizes within the strong-confinement regime of about 3 to 11 nanometers," Yu explained. "This allows us to systematically study the dependence of quantum confinement on the diameters of the wires. And because the wires are so long — micrometers in length — they could be considered as perfect one-dimensional structures and two-dimensional confinement systems around their diameters."

Yu and Buhro found that, in addition to being able to dictate the nanowires’ diameters, they could also control monodispersity — the deviation between each nanowire’s diameter and that of neighboring nanowires grown in the same solution. This ability was critical because a change in the nanowire’s diameter will alter its physical properties including light emission, an important application for semiconductors.

The chemists focused on nanowires made of the semiconductor indium phosphide for several reasons, but chiefly because it absorbs and emits light in a convenient region of the electromagnetic spectrum.

"Another reason we were interested in indium phosphide is that quantum dots of very high quality have been reported [by others] and extensively studied," Yu noted. "So it was easy for us to compare our wires, 2-D confined, with their dots, 3-D confined, to see how the shape matters in nanostructures.

Because the study was the first of its kind to probe the differences between 2-D and 3-D quantum confinement, the chemists corroborated their experimental results with theoretical calculations performed by researchers at Lawrence Berkeley National Labs. The theoreticians used sophisticated computer models to calculate, atom by atom, the expected band gap of model nanowires and nanodots, which compared closely to the experimental values.

After compiling all of the data graphically, the group found that the famous "particle-in-a-box" calculation — a quantum model both simple enough for college freshmen and rigorous enough to explain observed quantum phenomena - fell short of predicting absolute values for individual shapes , due to its simplification of the nature of diameter dependence.

However, they were encouraged to discover that particle-in-a-box approximated the ratio of the slopes of wires to dots, a fact verified by their experimental and theoretical data. This is a particularly advantageous finding because it gives other researchers a method of assessing 2-D confinement in their own quantum wires without the need of a supercomputer.

"The semiconductor quantum-wire field is very young, because synthetic limitations are only now being surmounted," Buhro said. "Experimentalists working in the quantum dot field were largely unaware of how the band-gaps in corresponding families of quantum dots and quantum wires should compare. We have now provided the criteria by which quantum confinement in semiconductor wires should be judged.

"I hope that workers in the field will use our criteria to prove that newly synthesized examples exhibit true 2-D confinement."

By Carolyn Jones Otten

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/420.html

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>