Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How AIDS destroys immunity

21.08.2003


University of Utah biologist finds HIV gene makes a human gene turn bad



A human gene named ATR normally protects people by preventing the replication of cells damaged by radiation or toxic chemicals. Now, Utah and New York researchers have discovered how a gene in the AIDS virus hijacks the human gene and turns it into a weapon that prevents reproduction of immune-system white blood cells, leaving AIDS patients vulnerable to deadly infections and cancer.

The new study "puts us a big step closer to understanding how HIV [human immunodeficiency virus] dismantles the immune system," says molecular biologist Vicente Planelles, an associate professor of pathology at the University of Utah School of Medicine.


It also raises the prospect for new kinds of treatments for AIDS and cancer.

Researchers already knew that an HIV gene named vpr led to the depletion of immune-system white blood cells named CD4+ lymphocytes. The new study suggests vpr does that by activating the ATR gene, which is found in white blood cells and all human cells.

The ATR gene’s normal job is to detect genetic damage to cells caused by radiation, toxic chemicals and chemotherapy, and to stop the damaged cells from replicating until they can repair themselves. Planelles and researchers at the University of Rochester, N.Y., found evidence that the vpr gene – one of nine genes in the AIDS virus – exploits this normal repair process to stop vital white blood cells from replicating, thus disabling the immune system.

The findings were published last month in The Journal of Biological Chemistry.

The study raises the possibility of treating AIDS-related immune-system damage with medicines that prevent the human ATR gene from being activated by HIV’s vpr gene.

"We would like to find a method or a substance that would allow us to interfere with the ability of HIV to kill the white blood cells using this mechanism," Planelles says.

It may take five to 10 years to develop medicines to interfere with the human ATR gene, he says, but they theoretically could offer a big advantage over existing AIDS drugs, which attack HIV but can lose effectiveness when the virus mutates to resist the drugs.

The research also reinforces Planelles’ 1999 discovery that the AIDS virus’ vpr gene can kill cancer cells in culture. That raises the prospect of developing a drug that mimicks the vpr gene’s ability to activate the ATR gene, thus stopping the replication of cancer cells. He says it will take at least five years to find such a drug.

Many existing chemotherapy drugs damage DNA in cancer cells. The ATR gene senses the damage and stops division of the cancer cells, in effect stopping the cancer.

In the new study, Planelles and colleagues did not actually show how the AIDS virus’ vpr gene triggers ATR to halt the replication of CD4+ white blood cells, but instead showed how vpr triggers ATR in human cervical cancer cells known as HELA cells, stopping replication of the cancer cells. The cancer cells are easier to use in the laboratory, and vpr works the same in all types of cells, whether white blood cells or cancer cells, Planelles says.

He plans to replicate the study using white blood cells instead of the cancer cells.

Planelles conducted the research with Mikhail Roshal, a medical student at the University of Rochester; Baek Kim, a Rochester biochemist; Yonghong Zhu, a former Rochester graduate student now at DNAX Research, Inc. in California; and Paul Nghiem, a Harvard University postdoctoral researcher.

Studying HIV’s ’Lethal Weapon’

The vpr gene has been known for years, but in 1995 Planelles discovered that its role was to act as HIV’s "lethal weapon" by preventing CD4+ white blood cells from dividing and replicating, thus leaving AIDS patients with a crippled immune system.

Depletion of CD4+ white blood cells is the hallmark of lost immunity in AIDS patients. The number of CD4+ white blood cells in healthy people is about 1,000 cells per microliter of blood, but drops below 200 cells per microliter in untreated AIDS patients and climbs to 500 to 1,000 cells per microliter in AIDS patients receiving antiviral treatment.

"Historically, it was clear that HIV killed white blood cells, but it took a while to figure out how," Planelles says. "We don’t know it completely yet. But by 1995, we figured out that the vpr gene was major factor in killing the cells. In fact, we can use vpr alone in the absence of other HIV DNA [genetic material] or proteins to kill white blood cells. We discovered the way vpr disrupts the life of the cell is by first preventing it from dividing or reproducing and then inducing it to die. It’s a two-hit mechanism."

The new study showed how vpr triggers the human ATR gene, setting off a "cascade" or "pathway" in which other genes and the proteins they help produce work in a chain reaction to stop white blood cells from dividing.

Planelles worked at the University of Rochester before moving to Utah in 2002. The University of Rochester has a patent pending on Planelles’ discovery that the AIDS vpr gene activates the human ATR gene, which was discovered in 1996 at Harvard University.

Demonstrating the ATR Gene’s Role

Determining the ATR gene’s role was difficult. A common method of learning what a gene does is to breed a "knockout mouse" in which the gene has been disabled. By seeing what goes wrong with the mouse, scientists can determine the gene’s normal function. But the method could not be used for ATR because the gene is essential for cell division and development of an organism. If it is knocked out, the organism dies.

So Planelles and colleagues used other methods to block the ATR gene and render it unable to help the AIDS virus vpr gene stop cells from replicating:


They used a method called "gene silencing" to inhibit the ATR gene.

They put an inactive mutant version of the ATR gene into the cancer cells, inactivating the ATR gene in those cells.

They applied drugs to the ATR gene. One was a substance known as LY294002. The other was caffeine, in extremely high doses.

In all three cases, interfering with the ATR gene left it unable to help the AIDS virus’ vpr gene. As a result, the cells in the experiment were able to replicate. That demonstrated that vpr activates ATR to block cell replication in cells targeted by the AIDS virus.
Caffeine was used in the study because earlier research found that large concentrations of caffeine blocked the ability of chemotherapy drugs to prevent the division of cancer cells grown in the laboratory, and instead let the cancer cells replicate. Despite the new experiment, Planelles says caffeine is unlikely to be used as an anti-AIDS drug because the necessary doses – equivalent to 140 to 280 cups of coffee per day – would damage patients’ nervous system.

To convert the findings into a clinically and commercially useful AIDS treatment, scientists must find a drug that interferes with the ATR gene only in white blood cells and without causing serious side effects, he adds.

Details of the Pathway to Doom

Here is how Planelles outlines the "pathway" by which the AIDS virus vpr gene stops cells from replicating. He describes this chain of events "like a relay race where you pass the baton," except in this case, the proteins produced by genes pass the signal that eventually stops replication of cells:

(1) The vpr gene activates the ATR gene. Exactly how that happens is not yet known.

(2) The ATR gene activates a protein named Chk1.

(3) Chk1 inactivates another protein named Cdc25C.

(4) Cdc25C inactivates a protein named Cdc2.

(5) Without active Cdc2, cells that already have duplicated their genetic material are unable to split into two cells.


###
Contacts:

Vicente Planelles, associate professor of pathology – office 801-581-8655, home 801-486-8772, vicente.planelles@path.utah.edu

Lee Siegel, science news specialist, University of Utah Public Relations – 801-581-8993, cellular 801-244-5399, leesiegel@ucomm.utah.edu

Vicente Planelles | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>