Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New growth-stimulating cue identified for nerve cells

24.07.2003


Bathed in nutrients, but in the absence of any particular cue, axons will extend from cortex nerve cells in all directions (top image). Toss in a growth stimulator like semaphorin-7a, and axon growth is heavier nearest the cue (bottom image). Credit: Johns Hopkins Medical Institutions, Nature.


For decades, scientists have hunted for signals that guide nerve cells’ tentacle-like axons, hoping to understand how these cell tips reach out to distant targets. It’s knowledge that might one day help researchers learn how to rebuild nerves lost to spinal cord injuries or diseases like Huntington’s.

Now, a Johns Hopkins team studying a family of proteins best known for repelling axons and inhibiting their growth reports finding one member that unexpectedly promotes axon growth instead. In their experiments, rat nerves in the lab grew more and longer axons on the side nearest a source of this protein, called semaphorin-7a. Moreover, in mice without semaphorin-7a, axons of some odor-sensing nerve cells never reached their targets, the scientists report in the July 24 issue of Nature.

"I’ve been studying semaphorins for about a decade and didn’t expect to find any that stimulated axon growth, certainly not to the extent we saw in the lab and in mice," says Alex Kolodkin, Ph.D., professor of neuroscience in The Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences. "Now we need to figure out how semaphorins balance their repulsive and attractive effects."



Part of the answer to this paradox, Kolodkin says, is that semaphorin-7a interacts with different proteins than its relatives. In experiments with rat nerve cells involved in sensing odors, first author and postdoctoral fellow Jeroen Pasterkamp, Ph.D., found that semaphorin-7a spurs axon growth by hooking onto proteins called integrins, which are found on nerves and many other cell types.

Among their many roles, integrins (pronounced IN-teh-grins) help control cells’ interactions with their surroundings by capturing chemical signals and conveying the messages to cells’ internal machinery. Even though this is the first report to link semaphorins and integrins, both protein families are rapidly being recognized as major contributors to neurological function and disease, says Kolodkin.

"Because integrins are important throughout the body, targeting them to stimulate axon growth or re-growth in a particular area of the brain or spinal cord presents many problems," notes Pasterkamp. "Our next steps are to find out exactly how semaphorin-7a’s message is passed along inside the nerve, which will hopefully reveal a useful, specific target for promoting axon growth following nerve injury or degeneration."

As the researchers learn more of the specifics about how semaphorin-7a differs from its relatives, they also hope to redraw their picture of how semaphorins as a family affect nerve development throughout life, they say.

Joanna Downer | EurekAlert!
Further information:
http://www.nature.com/nature
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>