Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling cell adhesion: Researchers report first evidence of ’catch bonds’

09.05.2003


Regulating cells under stress



An article published this week in the journal Nature provides the first experimental evidence for an unusual molecular bonding mechanism that could explain how certain cells adhere to surfaces such as blood vessel walls under conditions of mechanical stress.
Known as "catch bonds," the adhesion mechanism displays surprising behavior, prolonging rather than shortening the lifetimes of bonds between specific molecules as increasing force is applied. Proposed theoretically nearly 15 years ago, catch bonds could help explain how the body regulates the activity of white blood cells, which must flow freely through blood vessels -- yet bond to injury sites despite blood flow forces.

Understanding how catch bonds work could offer drug designers a new target for anti-inflammatory and anti-thrombosis compounds, and potentially provide a new approach to controlling the metastasis process that cancers use to spread.



"Before the experimental demonstration of catch bonds, we tended to think that force could regulate biochemical reactions only in one direction," said Cheng Zhu, a professor in the School of Mechanical Engineering at the Georgia Institute of Technology. "This work demonstrates that force can alter the rate in the other direction, depending on the type of interaction. In this post-genome era, we need to know more about how proteins interact with one another and with DNA. This work illustrates a new regulatory mechanism for how proteins – which from a mechanical engineer’s perspective are nanomachines – operate."

Supported by the National Institutes of Health (NIH), the research involves two teams of scientists, one at Georgia Tech and Emory University in Atlanta, and the other at the Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center in Oklahoma City. A paper describing the work was published in the May 8 issue of the journal Nature.

The researchers studied the activity of selectin molecules, a family of proteins that helps control the adhesion of white blood cells – leukocytes – used by the body to fight infection and repair injuries. Before they can respond to injury or infection, leukocytes must first tether to and then roll along the wall of a blood vessel. While tethered, the cells receive signals instructing them to enter underlying tissue to fight pathogens or repair injuries. The selectins control the first stage of that process, causing the leukocytes to drop out of the bloodstream and begin attaching to blood vessel walls.

In two separate but complementary experiments, the researchers found evidence of catch bonds operating within the complex of P-selectin and its ligand PSGL-1.

Using a custom-built atomic force microscope, researcher Bryan Marshall applied piconewton-scale forces to a junction connecting P-selectin and PSGL-1 molecules. Despite the difficulty of measuring such small forces, he was able to demonstrate that increasing the force extends the lifetime of the bonds under certain conditions.

"In one range, when we are increasing the force, we actually see the lifetimes of the bonds increase," he said. "Once you get past a certain point, the bonds behave like you would expect – when you apply a larger force, things come apart faster."

In making the measurements, Marshall carefully picked up only the effects of the interaction between P-selectin and PSGL-1 and shielded the instrument from thermal fluctuations that produce forces greater than those he was trying to measure. In several hundred measurements, Marshall applied forces of less than 10 piconewtons – comparable to the force exerted by a beam of photons leaving a laser pointer. He measured bond lifetimes as short as a few thousandths of a second and as long as a few seconds.

The second experiment involved flow chamber tests designed to simulate blood flow in the body. Oklahoma researchers perfused cells into the chamber while controlling flow rates and shear forces. This allowed them to study how adhesive bonds form and dissociate under the rolling interactions.

"We found that one range of forces, applied by increasing wall shear stress, actually increased the lifetimes of adhesive bonds between the cell adhesion molecule P-selectin and its ligand PSGL-1," said Dr. Rodger McEver, Fred Jones Distinguished Scientist at the Oklahoma Medical Research Foundation and adjunct professor of Biochemistry and Molecular Biology at the University of Oklahoma Health Science Center. "These observations confirmed the atomic force microscopy results and reinforced their physiological relevance in an experimental design that recapitulates cell interactions in the circulation."

Understanding the phenomenon is important, McEver noted, because the lifetimes of the adhesive bonds determine whether the white blood cells form the rolling interactions with blood vessel walls that are necessary for them to reach the point of inflammation.

The mechanism may play a vital role in allowing the leukocytes to do their job without creating problems elsewhere in the body.

"Catch bonds may play a role in preventing the accumulation of white blood cells in low-flow regions," said Marshall. "You really want the adhesion to be very specific to where they are needed. If you had really strong adhesion all the time, white blood cells would accumulate in regions where they shouldn’t. Catch bonds may be the body’s way of preventing white blood cells from lingering in stagnant backwaters in the bloodstream where there is little flow."

While the existence of catch bonds has so far been confirmed in selectin molecules, Zhu believes the phenomenon applies other instances in which adhesive molecules interact in the presence of mechanical stress caused by liquid flows. The adhesion of bacterial cells to the gastrointestinal tract, for instance, may also rely on the mechanism to regulate when cells should attach – and when they should not.

"One of our goals now is to demonstrate that catch bonds are universal to at least several classes of molecules," added Zhu, who also holds a faculty appointment in the Coulter School of Biomedical Engineering operated by Georgia Tech and Emory University. "At the atomic level, we want to understand what makes these interactions behave as catch bonds."

In addition to the researchers already mentioned, the team included Mian Long and James Piper of Georgia Tech and Tadayuki Yago of the Oklahoma Medical Research Foundation.


###
Technical Contact: Cheng Zhu (404-894-3269); E-mail: (cheng.zhu@me.gatech.edu)

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>