Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxford Improves Production Method for Interfering RNA

29.04.2003


Researchers at Oxford University’s Department of Biochemistry have developed methods for making RNA duplexes and single-stranded RNAs of desired length and sequence. This exciting technology is most applicable to commercial RNA providers and companies with large in-house requirements for RNA molecules as it will greatly increase cost-effectiveness.



Small interfering ribonucleic acids (siRNAs) are powerful laboratory tools for directed post- transcriptional gene expression knockdown and inhibition of viral propagation. For siRNA to be active, it is important that the overhang in the antisense strand is complementary to the target messenger RNA. Exogenous siRNA is frequently used in RNAi studies using chemically synthesised RNA oligonucleotides to identify reagents with optimal activity.

Chemical synthesis of RNAs is relatively straightforward, but can be prohibitively expensive. Intracellular expression provides a source of continuous production of RNA in the cell, but it offers little control over the quantity of the expressed RNA and the sequence length. In vitro transcription is relatively cheap and offers a good approach to synthesis of large quantities of RNA. Unfortunately, in vitro transcription is limited by specific sequence requirements that greatly reduce the number of potential target sites for siRNA selection. Highly efficient promoters cannot be used, due to the leader sequence being transcribed and incorporated into the siRNA, leading to a further disadvantage. The inclusion of these leader sequences ultimately prevents the siRNA from efficiently functioning in RNA interference.


The methods of the Oxford invention rely on cleavage of primary single-stranded RNAs at a defined position in order to generate RNA strands of a required length and sequence. If it is desired to produce an RNA duplex, then two such RNA strands having complementary sequence, over at least a portion of their length, may be synthesised and then annealed to form an RNA duplex.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent on this exciting technology and is actively seeking partners to commercialise it. Incorporated into the production process of commercial providers of RNA, the Oxford technology would provide huge potential benefits, greatly reducing the cost per nucleotide for RNA products.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1262.html
http://nar.oupjournals.org/cgi/content/full/31/7/e38

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>