Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxford Improves Production Method for Interfering RNA

29.04.2003


Researchers at Oxford University’s Department of Biochemistry have developed methods for making RNA duplexes and single-stranded RNAs of desired length and sequence. This exciting technology is most applicable to commercial RNA providers and companies with large in-house requirements for RNA molecules as it will greatly increase cost-effectiveness.



Small interfering ribonucleic acids (siRNAs) are powerful laboratory tools for directed post- transcriptional gene expression knockdown and inhibition of viral propagation. For siRNA to be active, it is important that the overhang in the antisense strand is complementary to the target messenger RNA. Exogenous siRNA is frequently used in RNAi studies using chemically synthesised RNA oligonucleotides to identify reagents with optimal activity.

Chemical synthesis of RNAs is relatively straightforward, but can be prohibitively expensive. Intracellular expression provides a source of continuous production of RNA in the cell, but it offers little control over the quantity of the expressed RNA and the sequence length. In vitro transcription is relatively cheap and offers a good approach to synthesis of large quantities of RNA. Unfortunately, in vitro transcription is limited by specific sequence requirements that greatly reduce the number of potential target sites for siRNA selection. Highly efficient promoters cannot be used, due to the leader sequence being transcribed and incorporated into the siRNA, leading to a further disadvantage. The inclusion of these leader sequences ultimately prevents the siRNA from efficiently functioning in RNA interference.


The methods of the Oxford invention rely on cleavage of primary single-stranded RNAs at a defined position in order to generate RNA strands of a required length and sequence. If it is desired to produce an RNA duplex, then two such RNA strands having complementary sequence, over at least a portion of their length, may be synthesised and then annealed to form an RNA duplex.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent on this exciting technology and is actively seeking partners to commercialise it. Incorporated into the production process of commercial providers of RNA, the Oxford technology would provide huge potential benefits, greatly reducing the cost per nucleotide for RNA products.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1262.html
http://nar.oupjournals.org/cgi/content/full/31/7/e38

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>