Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxford Improves Production Method for Interfering RNA

29.04.2003


Researchers at Oxford University’s Department of Biochemistry have developed methods for making RNA duplexes and single-stranded RNAs of desired length and sequence. This exciting technology is most applicable to commercial RNA providers and companies with large in-house requirements for RNA molecules as it will greatly increase cost-effectiveness.



Small interfering ribonucleic acids (siRNAs) are powerful laboratory tools for directed post- transcriptional gene expression knockdown and inhibition of viral propagation. For siRNA to be active, it is important that the overhang in the antisense strand is complementary to the target messenger RNA. Exogenous siRNA is frequently used in RNAi studies using chemically synthesised RNA oligonucleotides to identify reagents with optimal activity.

Chemical synthesis of RNAs is relatively straightforward, but can be prohibitively expensive. Intracellular expression provides a source of continuous production of RNA in the cell, but it offers little control over the quantity of the expressed RNA and the sequence length. In vitro transcription is relatively cheap and offers a good approach to synthesis of large quantities of RNA. Unfortunately, in vitro transcription is limited by specific sequence requirements that greatly reduce the number of potential target sites for siRNA selection. Highly efficient promoters cannot be used, due to the leader sequence being transcribed and incorporated into the siRNA, leading to a further disadvantage. The inclusion of these leader sequences ultimately prevents the siRNA from efficiently functioning in RNA interference.


The methods of the Oxford invention rely on cleavage of primary single-stranded RNAs at a defined position in order to generate RNA strands of a required length and sequence. If it is desired to produce an RNA duplex, then two such RNA strands having complementary sequence, over at least a portion of their length, may be synthesised and then annealed to form an RNA duplex.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent on this exciting technology and is actively seeking partners to commercialise it. Incorporated into the production process of commercial providers of RNA, the Oxford technology would provide huge potential benefits, greatly reducing the cost per nucleotide for RNA products.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1262.html
http://nar.oupjournals.org/cgi/content/full/31/7/e38

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>