Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-speed images show how cells mobilize for immune response


New high-speed imaging techniques are allowing scientists to show how a single cell mobilizes its resources to activate its immune response, a news research study shows.

Howard R. Petty, Ph.D., professor and biophysicist at the University of Michigan Health System’s Kellogg Eye Center, has dazzled his colleagues with movies of fluorescent-lit calcium waves that pulse through the cell, issuing an intracellular call-to-arms to attack the pathogens within.

He explains that these high-speed images provide a level of detail about cell signaling that simply wasn’t possible just a few years ago.

In the April 15 issue of the Proceedings of the National Academy of Sciences, Petty provides more detail on cell signaling, depicting what he calls the "molecular machinery" underlying the immune response. He has identified a sequence of amino acids (LTL) that controls the calcium wave pathway and, crucially, the ability of immune cells to destroy targets.

The findings are important because they could eventually lead scientists to design drugs based on the amino acid motif.

"Our clinical goal," explains Petty, "is to characterize the immune cell’s signaling function so that we can interrupt it or somehow intervene when it begins to misfire." The process has implications for treating autoimmune diseases such as arthritis, multiple sclerosis, and the eye disorder uveitis.

Through images of phagocytosis, the process by which a cell engulfs and then destroys its target, Petty is able to track the movement of calcium waves as they send signals to key players in the immune response. The "calcium wave" is a stream of calcium ions coming into the cell, which is detected by the fluorescence emission of a calcium-sensing dye.

As a cell membrane begins to surround its target, two calcium waves begin to circulate. When the target is completely surrounded, one wave traveling around the cell’s perimeter splits in two, with the second wave encircling the phagosome or sac-like compartment. This second wave allows the digestive enzymes to enter the phagosome and finally destroy the target.

When Petty introduced a mutation in the gene (FcyRIIA) that controls phagocytosis, he found that the calcium wave simply circled the cell and bypassed the phagosome altogether. As a result, the immune cell could engulf, but could not carry out the destruction of its target. This led him to conclude that the LTL sequence orchestrates the cell signaling process.

The sequence may also have a role in directing other cell activities, for example signaling the endoplasmic reticulum to form a spindle that connects the phagosome and the outer cell membrane. "The spindle seems to act as an extension cord that signals the calcium wave into the phagosome to finish the attack," suggests Petty.

Petty explains that many of these findings are possible thanks to high-speed imaging techniques that enable him to merge knowledge of physics with cell and molecular biology. He uses high sensitivity fluorescence imaging with shutter speeds 600,000 times faster than video frames.

"Before the advent of high-speed imaging, you could not ask many of these questions because we had no way to see the movement of calcium waves," he says. "With conventional imaging you ended up with a blur of calcium." By contrast, Petty’s images resemble the movement of a comet across the night sky.

In the study reported in PNAS, Petty used leucocytes as a model for the process. The amino acid sequence is in the region of the gene FcyRIIA. He is currently studying the same phenomena in the eye, where phagocytosis disposes of the regularly-shed remnants of photoreceptor cells.

The paper, Signal sequence within FcRIIA controls calcium wave propagation patterns: Apparent role in phagolysosome fusion, also appears on the PNAS internet site at

Betsy Nisbet | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>