Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying naturally-occurring active ingredients for use in skin-care products

08.04.2003


The desire for healthy-looking skin has existed throughout the centuries and has often led humanity to flowers and other plants in search of assistance. COSMACTIVE treads the same path, but uses the latest in biotechnology to identify and extract the active ingredients from a wide range of plants.



Under the umbrella of the EUREKA project COSMACTIVE, the French research company Greentech has developed a new way of identifying and selecting active ingredients that gives it, and its Spanish partner Laboratorios Dr. Vinyals, a competitive edge over their rivals.

The COSMACTIVE project looked at a variety of botanical species from countries in Africa and South America and aimed to discover the active ingredients in those plants with a view to using the plant extracts in cosmetics. The objective was to find different applications for the active compounds, using them as anti-oxidants or anti-inflammatories for example. Maria Moya from Laboratorios Dr. Vinyals, the Spanish partner in the project, explains, “we began with over 200 plants and narrowed it down to six different botanical species with some characteristic activities in genetic testing in vitro, from which we could expect good activity in vivo.”


Having identified a potentially useful molecule from one of the six starting plants, the task was to find a complementary molecule from another plant that could be combined with the first molecule to make the active ingredient in a skincare product. In this way, the active ingredient in a self-tanning cream for example, could be accurately described as an extract of the two plants.

COSMACTIVE developed two databases of information. The first, a plant database of over 17,000 species, formed the basis for identifying potential complementary ingredients. It included technical information such as botany and pharmacology, as well as the traditional, indigenous use of the plant extracts. This database was then combined with a structural chemistry database of around 12,500 molecules and with mathematical modelling software capable of simulating the behaviour of active compounds on the skin.

Three main active ingredients have been identified and the project team now has patent rights for the use of these active ingredients in the whitening creams and self-tanning products it has developed as well as an anti-inflammatory ingredient.

EUREKA proved doubly advantageous for Greentech, the project leader. “Firstly the funding, that’s very important because it allowed us to do research which we perhaps wouldn’t have been able to at that time,” explains Dr Jean-Yves Berthon, president of Greentech.

Being able to draw on the Spanish partner’s experience in biochemistry was the other advantage. “That, after all, is EUREKA’s goal, to be able to gain ‘savoir-faire’ via an industrial experiment,” says Berthon.

His company’s turnover has increased by more than 30 per cent. “The project went very well with our partner and with the EUREKA project office. It was all great!” he enthuses.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/cosmactive

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>