Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that turns on RNA

19.09.2002


Knowing an organism’s genome is good, but knowing what turns on its genes is even better.



Scientists have long searched for triggers that activate ribonucleic acid (RNA), a key component in gene expression. Now, in the Thursday, Sept. 19 issue of the journal Nature, scientists from the University of Wisconsin-Madison report that they have found an enzyme that activates RNA, which could lead to new ways of regulating genetic information.

"One of the big questions in molecular biology is how genes are controlled," says Judith Kimble, a Howard Hughes Medical Institute investigator, a UW-Madison professor of biochemistry and senior author of the paper. "Our finding provides an important piece of the puzzle."


Inside the nucleus of every cell are genes, which are composed of deoxyribonucleic acid (DNA). This genetic information contains all the instructions cells need to make proteins, molecules that enable cells to carry out special functions, such as the transport of oxygen by red blood cells. For these cellular activities to happen, DNA must get copied into RNA, which carry the instructions outside the nucleus to the molecular machinery that makes proteins.

But along the way, things can go awry: If an RNA isn’t activated, Kimble says, "it can get trashed or hidden away. And, if the cell doesn’t have a particular RNA, it won’t have any of the protein the RNA encodes."

Liaoteng Wang, lead author of the article and a graduate student in Kimble’s lab, adds, "a gene won’t do any good if it fails to be expressed."

By studying the embryonic development of the microscopic worm, C. elegans, Kimble and Wang, as well as Marvin Wickens and Christian Eckmann also from UW-Madison’s biochemistry department, identified two proteins - GLD-2 and GLD-3 - that, when bound together to form an enzyme, activate specific RNAs outside the nucleus. This activation would enable the RNA to carry out important steps of germ line, or reproductive, development, such as the formation of sperm or egg cells. In other words, RNA wouldn’t get "trashed."

"People had been looking for this enzyme for a long time," says Kimble. "We were incredibly lucky. We found it serendipitously."

As Kimble explains, Wang and Eckmann had been working independently on the different proteins, both of which are responsible for most stages of germ line development. Wang studied GLD-2 and found that it had a site where reactions could take place, but that it couldn’t bind to an RNA. Eckmann, who studied GLD-3, found that his protein could do just the opposite: it could bind to an RNA, but didn’t have the catalytic site.

"Wang and Eckmann started looking for binding partners for their individual proteins and, amazingly, they found that GLD-2 and GLD-3 bound to each other," says Kimble.

Binding the two proteins together created an enzyme that could not only attach itself to RNA but could also chemically modify the RNA in a specific way that turns it on. And, as Kimble says, "When regulating biologic processes, you don’t want to activate all the RNAs in a cell - you want to activate only the important RNAs at the right time and in the right place."

Researchers have found homologs, or proteins similar to GLD-2, in other organisms, ranging from yeast to humans. Little is known about these homologs, except their amino acid sequences, says Kimble. Proteins similar to GLD-3 have also been found, but only in more complex animals, ranging from worms to humans. Again, how these proteins work remains a mystery.

"More and more organisms’ genomes have been completely sequenced, but sequences don’t tell you the biochemical function of proteins," says Wang. "In this study, we identified the biochemical function of GLD-2, and, since there are proteins in other organisms that have sequences similar to this protein, we can now make more educated guesses about the function of those proteins. It is the idea of ’one stone, many birds.’"

By identifying this enzyme that regulates how genes are expressed in C. elegans, the researchers say it will now be possible for scientists to explore how similar enzymes work in humans, possibly one day leading to new therapies. Says Kimble, "I think this is a big finding for anyone interested in how genes are regulated."


Emily Carlson (608) 262-9772, emilycarlson@facstaff.wisc.edu

Judith Kimble | EurekAlert!

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>