Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that turns on RNA

19.09.2002


Knowing an organism’s genome is good, but knowing what turns on its genes is even better.



Scientists have long searched for triggers that activate ribonucleic acid (RNA), a key component in gene expression. Now, in the Thursday, Sept. 19 issue of the journal Nature, scientists from the University of Wisconsin-Madison report that they have found an enzyme that activates RNA, which could lead to new ways of regulating genetic information.

"One of the big questions in molecular biology is how genes are controlled," says Judith Kimble, a Howard Hughes Medical Institute investigator, a UW-Madison professor of biochemistry and senior author of the paper. "Our finding provides an important piece of the puzzle."


Inside the nucleus of every cell are genes, which are composed of deoxyribonucleic acid (DNA). This genetic information contains all the instructions cells need to make proteins, molecules that enable cells to carry out special functions, such as the transport of oxygen by red blood cells. For these cellular activities to happen, DNA must get copied into RNA, which carry the instructions outside the nucleus to the molecular machinery that makes proteins.

But along the way, things can go awry: If an RNA isn’t activated, Kimble says, "it can get trashed or hidden away. And, if the cell doesn’t have a particular RNA, it won’t have any of the protein the RNA encodes."

Liaoteng Wang, lead author of the article and a graduate student in Kimble’s lab, adds, "a gene won’t do any good if it fails to be expressed."

By studying the embryonic development of the microscopic worm, C. elegans, Kimble and Wang, as well as Marvin Wickens and Christian Eckmann also from UW-Madison’s biochemistry department, identified two proteins - GLD-2 and GLD-3 - that, when bound together to form an enzyme, activate specific RNAs outside the nucleus. This activation would enable the RNA to carry out important steps of germ line, or reproductive, development, such as the formation of sperm or egg cells. In other words, RNA wouldn’t get "trashed."

"People had been looking for this enzyme for a long time," says Kimble. "We were incredibly lucky. We found it serendipitously."

As Kimble explains, Wang and Eckmann had been working independently on the different proteins, both of which are responsible for most stages of germ line development. Wang studied GLD-2 and found that it had a site where reactions could take place, but that it couldn’t bind to an RNA. Eckmann, who studied GLD-3, found that his protein could do just the opposite: it could bind to an RNA, but didn’t have the catalytic site.

"Wang and Eckmann started looking for binding partners for their individual proteins and, amazingly, they found that GLD-2 and GLD-3 bound to each other," says Kimble.

Binding the two proteins together created an enzyme that could not only attach itself to RNA but could also chemically modify the RNA in a specific way that turns it on. And, as Kimble says, "When regulating biologic processes, you don’t want to activate all the RNAs in a cell - you want to activate only the important RNAs at the right time and in the right place."

Researchers have found homologs, or proteins similar to GLD-2, in other organisms, ranging from yeast to humans. Little is known about these homologs, except their amino acid sequences, says Kimble. Proteins similar to GLD-3 have also been found, but only in more complex animals, ranging from worms to humans. Again, how these proteins work remains a mystery.

"More and more organisms’ genomes have been completely sequenced, but sequences don’t tell you the biochemical function of proteins," says Wang. "In this study, we identified the biochemical function of GLD-2, and, since there are proteins in other organisms that have sequences similar to this protein, we can now make more educated guesses about the function of those proteins. It is the idea of ’one stone, many birds.’"

By identifying this enzyme that regulates how genes are expressed in C. elegans, the researchers say it will now be possible for scientists to explore how similar enzymes work in humans, possibly one day leading to new therapies. Says Kimble, "I think this is a big finding for anyone interested in how genes are regulated."


Emily Carlson (608) 262-9772, emilycarlson@facstaff.wisc.edu

Judith Kimble | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>