Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin defects set off alarm with widespread and potentially harmful effects

29.05.2008
When patches of red, flaky and itchy skin on newborn mice led rapidly to their deaths, researchers at Washington University School of Medicine in St. Louis looked for the reason why.

What they found was a molecular alarm system that serves as a sentinel to monitor the integrity of skin — the body's essential protective barrier. The fatal effects of raising this alarm in the lab mice suggests generally that certain kinds of impairments to the skin's structure can potentially trigger harmful effects in other areas of the body, according to the researchers.

The study was published May 27, 2008, in PLoS Biology (a Public Library of Science journal). The research team found that the mice's irritated skin produced an alarm signal in the form of a natural inflammatory substance called TSLP (thymic stromal lymphopoietin), which launched a massive overproduction of white blood cells and ultimately killed the mice.

In people, TSLP has been shown previously to be involved in atopic dermatitis and in asthma. The mice's skin problems closely resembled atopic dermatitis, a chronic skin irritation experienced by up to a fifth of children in industrialized countries.

... more about:
»Alarm »Barrier »Notch »TSLP »blood »defect »immune »organs

"Both the lung and the skin are barrier organs whose job is to keep what's inside in and what's outside out," says Raphael Kopan, Ph.D., professor of developmental biology and of medicine in the Division of Dermatology. "Under normal circumstances, TSLP serves as an alarm to call in the immune system to heal breaches in these barrier organs. Healing turns the alarm off and sets everything back to normal."

Kopan notes that TSLP could be part of the reason that children that have atopic dermatitis also go on to have a high incidence of asthma. "It's possible that once this molecule gets into the system other organs such as the lungs go on guard and become more susceptible to problems such as asthma," he says.

The experimental mice were engineered so that they had skin patches that were missing one or more genes that help insure normal cell growth and differentiation during skin's continual process of renewal and during wound healing. The research team found that TSLP was produced only in the defective areas of skin, and then entered the bloodstream, reaching concentrations 5,000 times above normal.

Careful scientific detective work by M.D./Ph.D. student Shadmehr Demehri uncovered the connection between the skin defects and the fatal immune disorder in the mice. "When I joined the lab, the team had developed genetically engineered mice with structural skin defects, but they didn't have any idea why they were dying," Demehri says. "I started looking for the cause, and one of the first things I noticed was the high white blood cell counts."

A lengthy process of elimination eventually revealed that the fatal immune response was a reaction to a factor released by the defective skin patches. The researchers found that the factor was TSLP. Because the mice's skin problems stemmed from genetic abnormalities, the skin couldn't return to normal, and the TSLP alarm signal couldn't be turned off. High levels of TSLP activated an immune response that produced extreme numbers of B-cells, a kind of white blood cell that makes antibodies to destroy pathogens.

The researchers uncovered the skin's alarm system while studying a different molecule — Notch, an important component of a cellular communication system present in most multicellular organisms. Notch signaling ensures that skin cells grow and differentiate appropriately.

One by one, the team stopped the activity of the eight Notch genes active in mouse skin and found that each time a gene was taken out, skin problems increased. Mice with skin patches missing all eight genes died of B-cell lymphoproliferative disorder within 30 days. Their white blood cell counts were 40 to 80 times above normal.

Interestingly, further experiments revealed that the absence of Notch was not the direct cause of the rise in TSLP in the mice. When the team discovered that another type of mouse with a different genetic skin defect also had high levels of TSLP, they realized that there must be some as yet unidentified molecular mechanism in skin that senses defects in the integrity of the tissue and sets off the TSLP alarm. That sensor mechanism is the next target of their research investigations.

"We feel the sensor could play two roles," Kopan says. "On the one hand it's very critical because it would alert the body to breaches in its barrier organs such as skin and the lungs. On the other hand, if something goes wrong and the alarm can't be turned off, it could be dangerous."

Kopan says that this system is an excellent example of the way processes in the body are integrated. "When something on one part of the body is acting improperly, the entire system becomes aware of it," he says.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Alarm Barrier Notch TSLP blood defect immune organs

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>