Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell's 'power plant' genes raise vision disorder risk

08.05.2008
Genetic variation in the DNA of mitochondria – the “power plants” of cells – contributes to a person’s risk of developing age-related macular degeneration (AMD), Vanderbilt investigators report May 7 in the journal PLoS ONE.

The study is the first to examine the mitochondrial genome for changes associated with AMD, the leading cause of blindness in Caucasians over age 50.

“Most people don’t realize that we have two genomes,” said lead author Jeff Canter, M.D., M.P.H., an investigator in the Center for Human Genetics Research. “We have the nuclear genome – the “human genome” – that makes the cover of all the magazines, and then we also have this tiny genome in mitochondria in every cell.”

Canter teamed with Jonathan Haines, Ph.D., and Paul Sternberg, M.D., experts in AMD genetics and treatment, to examine whether a particular variation in the mitochondrial genome is associated with the disease. The genetic change occurs in about 10 percent of Caucasians, referred to as mitochondrial haplogroup T.

... more about:
»AMD »Canter »Genetic »Genome »Haines »mitochondria »mitochondrial

“We suspect that this variant will be one of a small group of important genetic variations that underlie AMD,” Canter said. “By knowing this, we have a better chance of predicting accurately who will get the disease.”

AMD affects as many as 10 million people in the United States, robbing them of the sharp central vision necessary for everyday activities like reading, driving, watching television, and identifying faces. The toll of the disease is expected to mount as the U.S. population ages.

The genetics of AMD has been a “hot” area lately, Canter said. Haines led a team that identified a variant in the Complement Factor H (CFH) gene as accounting for up to 43 percent of AMD. Variations in ApoE2 and a gene called LOC387715 on chromosome 10 have also been linked to the disease, and Haines and colleagues demonstrated an interaction between the chromosome 10 gene and smoking in raising AMD risk.

The current study also examined variation in these nuclear genes in 280 cases and 280 age-matched controls, and demonstrated that the mitochondrial genome variation was independent of the known nuclear factors.

“We’re at the stage where we can use genetic information to predict who is likely to develop AMD well before they actually develop it,” said Haines, director of the Center for Human Genetics Research. “Now we can conduct trials of preventive treatments – something’s that never been possible before.”

Sternberg, G.W. Hale Professor and Chairman of the Vanderbilt Eye Institute, is leading a trial to test preventive measures in AMD.

Variation in the mitochondrial genome reflects human migrations and different environmental exposures. Changes in the mitochondrial DNA can alter the efficiency of energy generation and lead to over-production of “reactive oxygen species” – free radicals that can damage the cell.

“By identifying genetic changes associated with the mitochondria, our results lend additional confirmatory evidence for the role of oxidative stress in AMD,” Sternberg said. “This supports study of interventions that attempt to bolster our antioxidant defenses.”

“I can see a day when physicians order genotyping on patients at a certain age to determine risk for AMD and put things in place – dietary changes, antioxidants, increased screening – that could prevent the disease,” Canter added. “This would be truly personalized medicine.”

Canter emphasized that variation in the mitochondrial genome has been linked to a wide variety of diseases including neurodegenerative diseases like Parkinson’s and Alzheimer’s as well as breast cancer and trauma survival.

“It’s important to realize that there’s another genome in the mitochondria, and even though there are not many genes there, they’re important,” Canter said.

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: AMD Canter Genetic Genome Haines mitochondria mitochondrial

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>