Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic tags reveal secrets of memories' staying power in mice

25.02.2008
A better understanding of how memory works is emerging from a newfound ability to link a learning experience in a mouse to consequent changes in the inner workings of its neurons. Researchers, supported in part by the National Institutes of Health's National Institute of Mental Health (NIMH), have developed a way to pinpoint the specific cellular components that sustain a specific memory in genetically-engineered mice.

"Remarkably, this research demonstrates a way to untangle precisely which cells and connections are activated by a particular memory," said NIMH Director Thomas Insel, M.D. "We are actually learning the molecular basis of learning and memory."

For a memory to last long-term, the neural connections holding it need to be strengthened by incorporating new proteins triggered by the learning. Yet, it's been a mystery how these new proteins -- born deep inside a neuron -- end up becoming part of the specific connections in far-off neuronal extensions that encode that memory.

By tracing the destinations of such migrating proteins, the researchers located the neural connections, called synapses, holding a specific fear memory. In the process, they discovered these synapses are distinguished by telltale molecular tags that enable them to capture the memory-sustaining proteins.

Mark Mayford, Ph.D., and Naoki Matsuo, Ph.D., of the Scripps Research Institute, report on their findings in the February 22, 2008, issue of the journal Science.

The Scripps researchers have been applying their new technique in a series of studies that focus on progressively finer details of the molecular machinery of memory.

"Inside neurons involved in a specific memory, we're tracing molecules activated by that learning to see how it ultimately changes neural connections," explained Mayford.

In a study published in the August 31, 2007, Science, Mayford and colleagues showed the same neurons activated by a learning experience are also activated when that memory is retrieved. The more neurons involved in the learning, the stronger the memory.

The researchers determined this by genetically engineering a strain of mice with traceable neurons in the brain's fear center, called the amygdala. Inserted genes caused activated neurons to glow red when the animals learned to fear situations where they received shocks, in a process known as fear conditioning -- and to glow green when the memory was later retrieved. The researchers then chemically prevented further expression of those neurons, so that resulting neural and behavioral changes could be confidently attributed to that learning experience at a later time. The study revealed which circuits and neurons were involved in the specific learning experience.

In the new study, Mayford and Matsuo adapted this approach to discover how fear learning works at a deeper level -- inside neurons of the brain's memory hub, called the hippocampus.

Evidence suggested that proteins called AMPA receptors strengthen memories by becoming part of the synapses encoding them. To identify these synapses, the researchers genetically engineered a strain of mice to express AMPA receptors traceable by a green glow. After fear conditioning had triggered new AMPA receptors deep in the neuron's nucleus, they chemically suppressed any further expression of the proteins. This allowed time for the receptors to migrate to their appointed synapses. Hours later, green fluorescence revealed the fate of the specific AMPA receptors born in response to the learning.

As expected, the newly synthesized AMPA receptors had traveled and become part of only certain hippocampus synapses -- presumably the ones holding the memory. Synaptic connections are made onto small nubs on the neuron called spines. These spines come in three different shapes called thin, stubby and mushroom. While little was known about the function of these differently shaped spines, the fact that they are altered in various forms of mental retardation, like Fragile-X syndrome, suggests a critical importance in mental function.

The researchers discovered the synapses that received the AMPA receptors with memory were limited to the mushroom type. The mushroom spines also figured prominently in the same neurons when the fear conditioning was reversed by repeatedly exposing the animals to the feared situation without getting shocked -- a procedure called extinction learning. This indicated that the same neurons activated when a fear is learned are also activated when it is lost. The surge in mushroom spine capture of the receptors appeared within hours of learning and was gone after a few days, but appeared to be critical for cementing the memory.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov
http://www.nimh.nih.gov

Further reports about: AMPA Mayford Neuron Receptors connections mushroom neural spine synapses

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>