Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid method of assembling new gene-editing tool could revolutionize genetic research

10.04.2012
Development of a new way to make a powerful tool for altering gene sequences should greatly increase the ability of researchers to knock out or otherwise alter the expression of any gene they are studying.

The new method allows investigators to quickly create a large number of TALENs (transcription activator-like effector nucleases), enzymes that target specific DNA sequences and have several advantages over zinc-finger nucleases (ZFNs), which have become a critical tool for investigating gene function and potential gene therapy applications.

"I believe that TALENs and the ability to make them in high throughput, which this new technology allows, could literally change the way much of biology is practiced by enabling rapid and simple targeted knockout of any gene of interest by any researcher," says J. Keith Joung, MD, PhD, associate chief for Research in the Massachusetts General Hospital (MGH) Department of Pathology and co-senior author of the report that will appear in Nature Biotechnology and has received advance online release.

TALENs take advantage of TAL effectors, proteins naturally secreted by a plant bacteria that are able to recognize specific base pairs of DNA. A string of the appropriate TAL effectors can be designed to recognize and bind to any desired DNA sequence. TALENs are created by attaching a nuclease, an enzyme that snips through both DNA strands at the desired location, allowing the introduction of new genetic material. TALENs are able to target longer gene sequences than is possible with ZFNs and are significantly easier to construct. But until now there has been no inexpensive, publicly available method of rapidly generating a large number of TALENs.

The method developed by Joung and his colleagues – called the FLASH (fast ligation-based automatable solid-phase high-throughput) system – assembles DNA fragments encoding a TALEN on a magnetic bead held in place by an external magnet, allowing automated construction by a liquid-handling robot of DNA that encodes as many as 96 TALENs in a single day at a cost of around $75 per TALEN. Joung's team also developed a manual version of FLASH that would allow labs without access to robotic equipment to construct up to 24 TALEN sequences a day. In their test of the system in human cells, the investigators found that FLASH-assembled TALENs were able to successfully induce breaks in 84 of 96 targeted genes known to be involved in cancer or in epigenetic regulation.

"Finding that 85 to 90 percent of FLASH-assembled TALENs have very high genome-editing activity in human cells means that we can essentially target any DNA sequence of interest, a capability that greatly exceeds what has been possible with other nucleases," says Jeffry D. Sander, PhD, co-senior author of the FLASH report and a fellow in Joung's laboratory. "The ability to make a TALEN for any DNA sequence with a high probability of success changes the way we think about gene-altering technology because now the question isn't whether you can target your gene of interest but rather which genes do you want to target and alter."

The research team also found that the longer a TALEN was, the less likely it was to have toxic effects on a cell, which they suspect may indicate that shorter TALENs have a greater probability of binding to and altering unintended gene sites. Joung notes that this supports the importance of designing longer TALENs for future research and potential therapeutic applications.

In 2008, Joung and colleagues at other institutions established the Zinc Finger Consortium (http://zincfingers.org), which has made a method of engineering ZFNs broadly available to academic laboratories. His team is now making the information and materials required to create TALENs with FLASH available within the academic community, and information about accessing those tools is available at http://TALengineering.org. Gene editing nucleases, including both ZFNs and TALENs, were recently named "Method of the Year" for 2011 by the journal Nature Methods.

Joung says, "While I believe that TALENs ease of design and better targeting range will probably make them a preferred option over ZFNs made by publicly available methods, ZFNs' smaller size and the less repetitive nature of their amino acid sequences may give them advantages for certain applications. For the time being, it will be important to continue developing both technologies." Joung is an associate professor of Pathology and Sander an instructor in Pathology at Harvard Medical School,

The study was supported by grants from the National Institute of Health – including an NIH Director's Pioneer Award to Joung – and by the Jim and Ann Orr MGH Research Scholar award. Co-lead authors of the Nature Biotechnology paper are Deepak Reyon, PhD, and Shengdar Tsai, PhD, of MGH Molecular Pathology Unit and the Center for Computational and Integrative Biology (CCIB). Additional co-authors are Cyd Khayter and Jennifer Foden, both of MGH Molecular Pathology and the CCIB.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>