Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a bull's-eye on the flu: Paper details influenza's structure for future drug targeting

22.10.2010
Beating the flu has always been tough, but it has gotten even more difficult in recent years. Two of the four antiviral drugs used to treat a nasty case of the influenza A virus no longer work.

Fortunately, scientists at the National High Magnetic Field Laboratory and Institute of Molecular Biophysics at Florida State University and researchers at Brigham Young University in Utah are close to understanding why these drugs have become less effective — and how new drugs might take their place. Their findings appear this week in the journal Science.

"Resistance to drugs is a fundamental problem that develops from their misuse, overuse and underuse," said Timothy A. Cross, the Earl Frieden Professor of Chemistry and Biochemistry at Florida State and director of the Magnet Lab's Nuclear Magnetic Resonance Program, as well as one of the Science article's senior authors. Compounding the problem is that "the development of new drugs to take their place is a decade-long process with infrequent success."

The two drugs no longer recommended by the U.S. Centers for Disease Control — amantadine (brand names Symadine and Symmetrel) and rimantadine (Flumadine) — have been used to fight the flu since 1969. For decades, they worked by preventing an essential protein function during viral infection of healthy cells. The protein, called the M2 channel, plays a key role in the virus' ability to reproduce. But the M2 channel mutated just enough to allow the virus to resist both drugs.

"Our work provides a blueprint on how protons are moved through a passageway inside the M2 channel," said Huan-Xiang Zhou, an FSU physics professor and the other senior co-author of the Science article. Interfering with that passageway is "an obvious route for drug development."

To study the M2 channel, researchers enlisted the help of one of the magnet lab's crown jewels: the 900-megahertz, nuclear magnetic resonance magnet. The 40-ton magnet was used to map the protein's structure by giving it the equivalent of an MRI scan. The detailed images allowed the research groups of Cross and Zhou to chart the tiniest, previously unknown aspects of the protein's atomic structure.

"Now that we have a much more refined view of M2 — going all the way down to the atomic level, the level that includes protons going through the channel — we can draw conclusions about how to block it," said David Busath, a biophysicist at Brigham Young University and a co-author of the Science paper.

Busath and his team have already begun screening millions of compounds, looking for drugs that will bind to the channel and block its reproductive role.

And FSU "has been awarded two patents for drug screening," Cross said. "We'll continue to use the 900-megahertz magnet for these drug-screening activities."

As to why the longtime flu drugs have become ineffective, the massive misuse of amantadine in poultry may have played a role, Cross said.

In the West, amantadine can only be given to humans. But starting in 2005, the Chinese began feeding it to chickens and other poultry to prevent them from getting avian flu. In all, China administered 2.6 billion doses of amantadine to its domestic birds.

"It's terrible to utilize these miracle drugs that can save thousands, if not millions, of lives and dramatically reduce hospitalizations in that fashion," Cross said.

The flu project headed up by Cross, Zhou and Busath is paid for by a 10-year, multimillion-dollar grant from the National Institutes of Health. Additional contributors to the Science article are lead author Mukesh Sharma, Myunggi Yi, Hao Dong and Huajun Qin, all of FSU, and Emily Peterson of BYU.

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

Timothy A. Cross | EurekAlert!
Further information:
http://www.fsu.edu
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>