Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a bull's-eye on the flu: Paper details influenza's structure for future drug targeting

22.10.2010
Beating the flu has always been tough, but it has gotten even more difficult in recent years. Two of the four antiviral drugs used to treat a nasty case of the influenza A virus no longer work.

Fortunately, scientists at the National High Magnetic Field Laboratory and Institute of Molecular Biophysics at Florida State University and researchers at Brigham Young University in Utah are close to understanding why these drugs have become less effective — and how new drugs might take their place. Their findings appear this week in the journal Science.

"Resistance to drugs is a fundamental problem that develops from their misuse, overuse and underuse," said Timothy A. Cross, the Earl Frieden Professor of Chemistry and Biochemistry at Florida State and director of the Magnet Lab's Nuclear Magnetic Resonance Program, as well as one of the Science article's senior authors. Compounding the problem is that "the development of new drugs to take their place is a decade-long process with infrequent success."

The two drugs no longer recommended by the U.S. Centers for Disease Control — amantadine (brand names Symadine and Symmetrel) and rimantadine (Flumadine) — have been used to fight the flu since 1969. For decades, they worked by preventing an essential protein function during viral infection of healthy cells. The protein, called the M2 channel, plays a key role in the virus' ability to reproduce. But the M2 channel mutated just enough to allow the virus to resist both drugs.

"Our work provides a blueprint on how protons are moved through a passageway inside the M2 channel," said Huan-Xiang Zhou, an FSU physics professor and the other senior co-author of the Science article. Interfering with that passageway is "an obvious route for drug development."

To study the M2 channel, researchers enlisted the help of one of the magnet lab's crown jewels: the 900-megahertz, nuclear magnetic resonance magnet. The 40-ton magnet was used to map the protein's structure by giving it the equivalent of an MRI scan. The detailed images allowed the research groups of Cross and Zhou to chart the tiniest, previously unknown aspects of the protein's atomic structure.

"Now that we have a much more refined view of M2 — going all the way down to the atomic level, the level that includes protons going through the channel — we can draw conclusions about how to block it," said David Busath, a biophysicist at Brigham Young University and a co-author of the Science paper.

Busath and his team have already begun screening millions of compounds, looking for drugs that will bind to the channel and block its reproductive role.

And FSU "has been awarded two patents for drug screening," Cross said. "We'll continue to use the 900-megahertz magnet for these drug-screening activities."

As to why the longtime flu drugs have become ineffective, the massive misuse of amantadine in poultry may have played a role, Cross said.

In the West, amantadine can only be given to humans. But starting in 2005, the Chinese began feeding it to chickens and other poultry to prevent them from getting avian flu. In all, China administered 2.6 billion doses of amantadine to its domestic birds.

"It's terrible to utilize these miracle drugs that can save thousands, if not millions, of lives and dramatically reduce hospitalizations in that fashion," Cross said.

The flu project headed up by Cross, Zhou and Busath is paid for by a 10-year, multimillion-dollar grant from the National Institutes of Health. Additional contributors to the Science article are lead author Mukesh Sharma, Myunggi Yi, Hao Dong and Huajun Qin, all of FSU, and Emily Peterson of BYU.

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

Timothy A. Cross | EurekAlert!
Further information:
http://www.fsu.edu
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>