Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a brake on tumor spread

24.01.2014
A team of scientists, led by principal investigator David D. Schlaepfer, PhD, a professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine, has found that a protein involved in promoting tumor growth and survival is also activated in surrounding blood vessels, enabling cancer cells to spread into the bloodstream.

The findings are published in this week's online issue of the Journal of Cell Biology.


Normal breast tissue and invasive ductal carcinoma stained brown with antibodies to activated FAK. Blood vessels are indicated by BV.

Credit: David Schlaepfer, UC San Diego.

Blood vessels are tightly lined with endothelial cells, which form a permeability barrier to circulating cells and molecules. "Our studies show that pharmacological or genetic inhibition of the endothelial protein focal adhesion kinase, or FAK, prevents tumor spread by enhancing the vessel barrier function."

The researchers found that selective FAK inhibition within endothelial cells prevented spontaneous tumor metastasis without alterations in tumor size. Schlaepfer, with colleagues at the UC San Diego Moores Cancer Center, is exploring whether inhibiting targets like FAK, which has important regulatory functions in both tumor cells and blood vessels, might provide a dual mechanism for preventing both cancer growth and spread.

Using mouse models of breast, ovarian and melanoma tumors, first author Christine Jean, PhD, showed that FAK activity was elevated in the blood vessels surrounding tumors, compared to normal tissue. FAK modifies the function of other cellular proteins, and researchers identified a previously unknown FAK target: a protein called vascular endothelial cadherin (VE-cadherin) that helps endothelial cells fasten tightly together. When modified by FAK, VE-cadherin complexes fall apart and blood vessels become leaky. Inactivating FAK within endothelial cells prevented this unwanted permeability and helped block the ability of tumor cells to pass through endothelial cell barriers.

Schlaepfer said the research has major clinical implications: Metastasis – or the spread of a cancer from its originating site to other parts of the body – is responsible for 90 percent of cancer-related deaths. "This fact alone underscores the need for a better mechanistic understanding of the metastatic process," Schlaepfer said. He noted that several FAK-inhibitors are currently being tested in clinical trials.

Co-authors include Xiao Lei Chen, Isabelle Tancioni, Sean Uryu, Christine Lawson, Kristy K. Ward and Nichol L.G. Miller, UC San Diego Moores Cancer Center; Ju-Ock Nam, Kyungpook National University, Korea; Colin T. Walsh, Binomics, San Diego; Majid Ghassemian, UCSD Department of Chemistry and Biochemistry; Patrick Turowski, University College London; Elisabetta Dejana, University of Milan; Sara Weis and David A. Cheresh, Department of Pathology, UC San Diego Moores Cancer Center.

Funding for this research came, in part, from the National Institutes of Health (grants RO1 HL093156, RO1 CA102310, and R37 CA50286), Italian Association for Cancer Research and The European Research Council, American Heart Association, Susan G. Komen for the Cure, Canadian Institutes of Health Research, Ruth Kirschstein National Research Service Award and Nine Girls Ask?

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>