Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins may point to alcohol use test

24.03.2010
Measuring a set of protein changes in the blood linked to alcohol use may potentially lead to a more accurate diagnostic test than those currently available, according to Penn State College of Medicine researchers.

"The challenge in alcohol abuse as opposed to substance abuse -- things like cocaine or heroin or PCP -- is that alcohol is a perfectly legal substance for those over 21," said Willard M. Freeman, Ph.D., department of pharmacology and lead investigator.

"Unlike routine testing for illicit drugs, you can't just look for a trace of alcohol because many people enjoy a drink in a responsible manner and alcohol is very quickly metabolized. Discriminating between excessive and responsible levels of drinking makes this a greater challenge."

Penn State Hershey researchers, working for two-and-a-half years in cooperation with Kathleen A. Grant, Ph.D., at the Oregon National Primate Research Center, identified a set of 17 proteins in the blood that accurately predicted alcohol usage 90 percent of the time in non-human primates. Researchers were able to separate usage into three categories -- no alcohol use, drinking up to two drinks per day and drinking at least six drinks per day.

Protein levels rose and declined depending on alcohol consumption.

"We observed that the levels of some proteins increased or decreased with as little as one or two drinks a day," Freeman said. "These same changes occurred with heavier levels of drinking. We also found other proteins that responded only to heavy levels of drinking. Combined, these proteins allow us to classify subjects into non-drinking, alcohol-using, and alcohol-abusing groups."

The researchers are continuing their work, first by determining whether the changes measured return to normal levels with cessation of drinking. Second, they are looking for additional proteins to both increase accuracy and provide alternates if some of the initial 17 do not work in humans.

Working with groups around the world, Penn State Hershey researchers -- led by Freeman and Kent Vrana, chair, department of pharmacology -- plan to collect blood from people undergoing inpatient treatment for alcohol abuse.

"We'll collect blood throughout their stay to see if the patients' protein pattern reverts from an excessive drinking pattern to a pattern that's indicative of alcohol abstinence," Freeman said.

The goal is to create a diagnostic test for alcohol consumption that may be used in areas of public safety like aviation or national security, for parole conditions and for helping physicians determine if a patient may have an alcohol abuse problem. Currently there are tests that try to address this issue, but Freeman said these tests are not sensitive and specific enough to serve as diagnostics.

"Many of these tests rely on just one protein," he said. "The limitation to this approach is that these tests often look at proteins produced by the liver. While these proteins increase with excessive alcohol intake, they also increase with any type of injury to the liver. For example, a lot of prescription drugs are hard on the liver. These tests let us know that the liver is being stressed but can't discriminate between excessive drinking and other conditions, which therefore reduces the utility of these tests.

"That's where we see the promise in this panel of proteins. The proteins are produced by a number of organs including the liver, the muscle, and the brain. This unique fingerprint that is indicative of alcohol abuse is less likely to be produced by unrelated conditions."

Freeman stresses, a diagnostic test would not be testing for alcoholism, but rather, alcohol intake.

"In a strictest use of the words, alcoholism is a psychological diagnosis as opposed to a level of drinking," he said. "The Diagnostic and Statistical Manual really classifies alcohol abuse and alcoholism based on how alcohol is interfering with your life. Obviously we can't use a blood test to say yes, your drinking is interfering with your home life. But the amount of drinking and the amount of problems it causes in your life are tightly correlated.

"We envision, a number of years down the line if this becomes a diagnostic test, that if the test indicates that you're drinking a lot, it would prompt a referral to a specialist in alcohol abuse and alcoholism. This test could provide an objective indicator to help people begin addressing what may really be a problem in their lives."

Also contributing to this research are Anna C. Salzberg, Penn State Hershey Cancer Institute and Steven W. Gonzales, Biotic Micro, Inc. The researchers findings are published online in Biological Psychiatry. The National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism supported this work.

Matt Solevey | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>