Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein highways keep tissues organized

19.10.2010
Precise regulation of tissue architecture is critical for organ function.

Single cells build up a tissue by communicating with their environment and with other cells, thereby receiving instructions on whether to divide, change shape or migrate.


Proteins (in red) are transported along a intracellular highway (microtubules, in green) to the cell periphery. Picture: Sara Wickstroem / Copyright: MPI of Biochemistry

An interdisciplinary group of researchers from several Max Planck Institutes have now identified a mechanism by which skin cells organize their interior architecture as a response to signals from their surroundings. “Cells react to changes in their environment very rapidly. To do this, cells need to have their signaling machinery at the right place at the right time” says Sara Wickström, a researcher from the Max Planck Institute of Biochemistry.

Cellular behavior is controlled by signaling pathways which deliver information derived from the surrounding tissue and other cells to the nucleus and other parts of the cell. In order to achieve both efficient and tightly regulated signaling, cells organize their proteins into distinct cellular compartments.

This organization is carried out by intracellular highways called microtubules that are specialized in protein transport. Sara Wickström from the MPIB in Martinsried is analyzing how signals from the extracellular environment regulate these intracellular highways to allow the transport of specific proteins to their correct location. Genetic analyses in mouse skin revealed that signaling from integrins, cell surface receptors that mediate the interactions of cells with their environment, regulate the organization of microtubules so that they can efficiently deliver proteins the cell surface. This is particularly important in tissues like skin, where the upper surfaces of the cells facing the outside world require a different composition than the lower surface facing the interior of the organism.

In collaboration with Matthias Mann and the Department of Proteomics and Signal Transduction, the exact proteins involved in the process were identified. In addition, expertise provided by Joachim P. Spatz at the MPI of Metals Research in Stuttgart allowed investigating the role of the cell shape in the regulation of microtubules. “The process of protein transport is very complex, and therefore a wide range of different approaches were needed to analyze it”, says Sara Wickström.

During diseases like cancer, cells escape normal regulatory mechanisms of cell adhesion and growth signaling to become more motile and proliferative. Changes in the levels of adhesion receptors as well as in the overall protein composition and distribution at the cell surface have long been known to take place in tumor cells. “The most interesting finding of our study is that all these processes are interregulated. Therefore understanding the basic mechanisms of the regulation might help to tackle the primary causes of these changes during disease”, says Sara Wickström. A particularly interesting question is why diseases like cancer become more frequent during ageing, during which structural alterations in the tissues also occur. Sara Wickström will move to start her own research group at the Max Planck Institute for Biology of Ageing in Cologne to continue this interesting avenue of research.

Original Publication:
S. A. Wickström, A. Lange, M. W. Hess, J. Polleux, J. P. Spatz, M. Krüger, K. Pfaller, A. Lambacher, W. Bloch, M. Mann, L. A. Huber and R. Fässler: Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Developmental Cell, October 19, 2010.
Contact:
Dr. Sara Wickström
Homeostasis and Ageing of the Skin
Max Planck Institute for Biology of Ageing
Gleueler Str. 50 a
50931 Cologne
Germany
E-Mail: wickstroem@age.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. ++49/89-8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.age.mpg.de/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>