Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein highways keep tissues organized

19.10.2010
Precise regulation of tissue architecture is critical for organ function.

Single cells build up a tissue by communicating with their environment and with other cells, thereby receiving instructions on whether to divide, change shape or migrate.


Proteins (in red) are transported along a intracellular highway (microtubules, in green) to the cell periphery. Picture: Sara Wickstroem / Copyright: MPI of Biochemistry

An interdisciplinary group of researchers from several Max Planck Institutes have now identified a mechanism by which skin cells organize their interior architecture as a response to signals from their surroundings. “Cells react to changes in their environment very rapidly. To do this, cells need to have their signaling machinery at the right place at the right time” says Sara Wickström, a researcher from the Max Planck Institute of Biochemistry.

Cellular behavior is controlled by signaling pathways which deliver information derived from the surrounding tissue and other cells to the nucleus and other parts of the cell. In order to achieve both efficient and tightly regulated signaling, cells organize their proteins into distinct cellular compartments.

This organization is carried out by intracellular highways called microtubules that are specialized in protein transport. Sara Wickström from the MPIB in Martinsried is analyzing how signals from the extracellular environment regulate these intracellular highways to allow the transport of specific proteins to their correct location. Genetic analyses in mouse skin revealed that signaling from integrins, cell surface receptors that mediate the interactions of cells with their environment, regulate the organization of microtubules so that they can efficiently deliver proteins the cell surface. This is particularly important in tissues like skin, where the upper surfaces of the cells facing the outside world require a different composition than the lower surface facing the interior of the organism.

In collaboration with Matthias Mann and the Department of Proteomics and Signal Transduction, the exact proteins involved in the process were identified. In addition, expertise provided by Joachim P. Spatz at the MPI of Metals Research in Stuttgart allowed investigating the role of the cell shape in the regulation of microtubules. “The process of protein transport is very complex, and therefore a wide range of different approaches were needed to analyze it”, says Sara Wickström.

During diseases like cancer, cells escape normal regulatory mechanisms of cell adhesion and growth signaling to become more motile and proliferative. Changes in the levels of adhesion receptors as well as in the overall protein composition and distribution at the cell surface have long been known to take place in tumor cells. “The most interesting finding of our study is that all these processes are interregulated. Therefore understanding the basic mechanisms of the regulation might help to tackle the primary causes of these changes during disease”, says Sara Wickström. A particularly interesting question is why diseases like cancer become more frequent during ageing, during which structural alterations in the tissues also occur. Sara Wickström will move to start her own research group at the Max Planck Institute for Biology of Ageing in Cologne to continue this interesting avenue of research.

Original Publication:
S. A. Wickström, A. Lange, M. W. Hess, J. Polleux, J. P. Spatz, M. Krüger, K. Pfaller, A. Lambacher, W. Bloch, M. Mann, L. A. Huber and R. Fässler: Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Developmental Cell, October 19, 2010.
Contact:
Dr. Sara Wickström
Homeostasis and Ageing of the Skin
Max Planck Institute for Biology of Ageing
Gleueler Str. 50 a
50931 Cologne
Germany
E-Mail: wickstroem@age.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. ++49/89-8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.age.mpg.de/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>