Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein expression gets the heart pumping

23.04.2014

Most people think the development of the heart only happens in the womb, however the days and weeks following birth are full of cellular changes that play a role in the structure and function of the heart.

Using mouse models, researchers at Baylor College of Medicine have now been able to categorize the alternative splicing (the process in which genes code proteins, determining their role) that takes place during these changes and what mechanisms they affect.

The findings, which appear in Nature Communications, also helped to identify a protein that regulates some of the alternative splicing and then goes on to change dramatically in its expression during the postnatal period.

"The cells of the heart stop dividing after birth but they have to continue growing and working together for the heart to pump the blood. So basically, we have made the connection between the process of alternative splicing and the development of this system that coordinates heart contraction and function," said Thomas Cooper, the S. Donald Greenberg professor of pathology & immunology at Baylor.

Researchers were able to separate two main cell types of the mouse heart, the cardiomyocytes and cardiac fibroblasts. Using RNA sequencing they looked at early- and late-stage development within the days following birth. RNA sequencing is a technique that reveals the messages transmitted to the cell from the genome, allowing researchers to see the mechanisms associated with gene expression. During the sequencing, Cooper and his colleagues were able to see what genes are turned on and off and which ones undergo an alternative splicing change.

By pinpointing these changes, the team of researchers identified the CELF1 protein as being responsible for regulating certain alternative splicing events, Cooper said. So by turning on and off CELF1 expression at different points in development, researchers were able to see how the protein affects development during this stage.

"We looked at hundreds of genes that undergo alternative splicing and were able to see which ones are regulated by CELF1," Cooper said. "We asked if is there anything in common among these genes and found that some were responsible for endocytosis and vesicular trafficking. So what is going on in heart development that is related to these processes associated with cell membrane dynamics?"

It turns out, Cooper said, that the cell membrane machinery that is required to coordinate contraction, the electrical activity of the heart, all develops in this postnatal period.

There are some ailments that CELF1 is associated with such as arrhythmias and some forms of muscular dystrophy and Cooper said it is possible that this protein could provide a treatment target.

"Now we know what happens during this period in terms of what genes are on and off and what alternative splicing takes place. This is new information for further studies to build on," he said. "There is still information about this developmental stage that must be looked at first."

###

This work was performed by Jimena Guidice, a postdoctoral fellow in Cooper's lab. Others who contributed to this research include Zheng Xia, Marissa A. Scavuzzo, Amanda J. Ward, Auinash Kalsotra, Wei Wang, Xander H.T. Wehrens, Wei Li, all of Baylor College of Medicine; and Eric T. Wang and Christopher B. Burge, both with Massachusetts institute of Technology. Ward and Kalsotra are currently with Isis Pharmaceuticals, Carlsbad California.

Funding for this research is from the National Institutes of Health (R01HL045565, R01AR060733, and R01AR045653), the Muscular Dystrophy Association, the Pew Charitable Trusts, the Myotonic Dystrophy Foundation, the American Heart Association, the National Institute of Neurological Disorders and Stroke, CPRIT and Foundation Leducq.

Graciela Gutierrez | Eurek Alert!

Further reports about: Heart Medicine Protein RNA activity function genes mechanisms protein pump splicing

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>