Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poisonous Morning Hygiene

31.01.2012
Chemists of the University Jena reveal how algae delete unwanted 'competitors'
Every morning when the sun comes up, the ocean ground is radically cleaned. As soon as the first rays of sunlight find their way into the water, the microalgae “Nitzschia cf pellucida” start their deadly ‘morning hygiene‘. The algae, the size of only some few micrometers, wrap themselves and their surroundings in a highly toxic poison: cyanogen bromide, a chemical relative of hydrocyanic acid, although much more toxic.

Like a ‘molecular toothbrush‘, which removes other micro-organisms thoroughly, every morning this chemical mace 'disinfects' the ground on which these diatoms grow. “Thus they can ideally grow and keep direct competitors for light and free space in check,“ Professor Dr. Georg Pohnert of the Friedrich Schiller University Jena (Germany) states. The director of the Institute of Inorganic and Analytical Chemistry revealed together with his team and colleagues of the University Ghent (Belgium) the chemical devastating blow of the diatoms. Their findings were published in the new edition of the well known science magazine “Proceedings of the National Academy of Sciences”.

Cyanogen bromide is a highly poisonous metabolic toxin and is – amongst other things – being used for the lixiviating of gold ores. During the First World War it was also used as a chemical weapon. “Until now it wasn't even known that this poison occurs in the living nature at all,“ says Professor Pohnert. For “Nitzschia cf pellucida” the production of cyanogen bromide seems to be easy though. As soon as the first rays of sunlight find their way into the water, the cellular 'devil's workshop' starts to work. “From two up to four hours after day break the concentration of the released cyanogen bromide is at its highest, later on it decreases,“ Professor Pohnert explains one of the results of his new study.

The scientists can still only speculate about the fact that the poison doesn't harm the diatoms themselves. One thing is for sure: While the 'competing' algae give up after two hours at most, subsequent to being attacked by cyanogen bromide the poison at the same time doesn't harm Nitzschia cf pellucida. To find the reasons for this is one of the next research objectives of the Jena scientists and their Belgian partners.

But according to chemist Pohnert this would be pure basic research. Cyanogen bromide is completely inapplicable to practical use – for instance as a means against unwanted algae growth. Because it is certain that in this case it is not only the algae that would be damaged.

Original-Publication:
Vanelslander B et al.: Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. PNAS 2012, www.pnas.org/cgi/doi/10.1073/pnas.1108062109

Contact:
Professor Dr. Georg Pohnert
Institute of Inorganic and Analytical Chemistry of Friedrich Schiller University Jena
Lessingstr. 8
D-07743 Jena
Phone: ++49 3641 948170
Email: Georg.Pohnert[at]uni-jena.de

Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/en/start_en.html
http://www.pnas.org/cgi/doi/10.1073/pnas.1108062109

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>