Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planting a New Perspective on Climate Research

01.08.2013
Stony Brook study published in Nature Communications is first genome-wide profiling of microRNAs in plant species to demonstrate how increasing C02 and temperatures affect plant development

A study on the mechanisms of how plants respond and adapt to elevated levels of carbon dioxide (C02) and higher temperatures has opened a new perspective in climate research. Lead researcher Qiong A. Liu (Alison) of the Department of Biochemistry and Cell Biology at Stony Brook University found that elevated C02 and higher temperatures affect the aspect of gene expression in plants that control flowering time and cell proliferation.

The results of the study, “The Effects of Carbon Dioxide and Temperature on microRNA Expression in Arabidopsis Development,” are published July 31 in the online journal Nature Communications.

Elevated C02 levels in the atmosphere have enhanced the greenhouse effect and resulted in climate change — and continued climate change within this century is inevitable. But how do these changes impact plants on a cellular level? To discover the answer, Liu focused on examining the impact that increased levels of C02 and increased temperature, each separately had on small RNAs in Arabidopsis thaliana, small flowering plants that only need about six weeks to go from germination to seed maturation.

Small RNAs are important regulators of gene expression in nearly all eukaryotes —organisms whose cells contain a nucleus and other structures within membranes. Their expressions can be altered in response to environmental stress. MicroRNAs (or miRNAs) belong to one of two types of small RNAs that function to silence the expression of their regulated target genes. Therefore, increased levels of miRNAs can reduce their target gene expression, and vice versa. Since miRNA target genes are often important regulators in specific biological pathways, the identification of miRNAs that are changed in expression by environmental stresses, such as elevated CO2 concentration and temperature, can enable scientists to identify the biological pathways that are involved in regulating plant phenotypes in response to a changing environment.

“This is the first small RNA paper in the area of climate change,” Liu says. “CO2 has never been shown previously to regulate small RNA expression, and temperature-related small RNAs studies have been done previously, but only at freezing or low temperatures (the optimum temperature for Arabidopsis is at 23oC). We found that a 3-6oC increase in temperature from optimum temperature regulates a different set of miRNAs from other temperature-regulated miRNAs, but nearly all miRNAs affected by doubling the atmospheric CO2 concentration in an opposite direction.”

Using the next generation of sequencing in combination with statistical and computational analyses, Liu and her research team provided the first genome-wide profiling that demonstrated that increasing atmospheric CO2 concentration and temperatures within the ranges that will occur within this century can alter the expression of four functional groups of miRNAs: controlling flowering time, cell division and proliferation, stress responses, and potentially cell wall carbohydrate synthesis.

“These results indicate that under global warming conditions, plant grain and biomass production can be changed through altering the expression of these miRNAs,” Liu explains. “Given that nearly all of these miRNAs are conserved across multiple species, identification of these miRNAs provide us a starting ground to improve plant yields, particularly those that are economically important, to meet the upcoming challenges of global warming.”

Liu adds that one pathway, a miRNA (miR156)-regulated pathway, was identified to most likely mediate elevated CO2 concentration-induced early flowering. This result was obtained independently from other three relevant studies published at the same time in the journal Science and Elife, which demonstrated that sugar, the primary product of photosynthesis,can also regulate this pathway.

The study findings also raise other questions. Liu hopes to answer these questions by advancing the research.

“So far, we have only tested one concentration of CO2, and 3 to 6oC changes of temperature. We hope to get the data in a gradient of CO2 and temperature conditions. In addition, we also will be interested in understanding how these conditions affect miRNA expression in several other tissues — root, shoot, and flower tissues, for example, at different developmental stages,” she says. “In addition, further genetic investigation on identified miRNAs individually will shed new light on how their regulated pathways function in adaption to climate change.”

The researcher is now testing how combined conditions of elevated CO2 concentration and elevated temperature affect miRNAs expression. These are important experiments, she says, given that these two conditions are known to affect several miRNAs expression in the opposite directions. It is also practically more meaningful as climate change really has both CO2 concentration and temperature increases at the same time.

Liu is also preparing a manuscript that is related to how elevated CO2 concentration affects the genomic DNA methylation, which is another regulatory mechanism to regulate gene expression and genome stability.

In addition to Alison Liu, other researchers from Stony Brook University include Will Liao and Yijin Wu, doctoral graduate students in the Department of Applied Mathematics and Statistics; Kyeesha Bycoats (a medical student at Stony Brook); and undergraduate Zhifan Yang, of Department of Biomedical Engineering.

The research is supported by a grant from National Science Foundation.

Office of Media Relations | Newswise
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>