Outsmarting Killer Bacteria

Antibiotics can work miracles, knocking out common infections like bronchitis and tonsillitis. But according to the Center for Disease Control, each year 90,000 people in the U.S. die of drug-resistant “superbugs” — bacteria like Staphylococcus aureus (MRSA), a deadly form of staph infection resistant to normal antibiotics. Although hospital patients are particularly susceptible as a result of open wounds and weakened immune systems, the bacteria can infect anyone.

Dr. Micha Fridman of Tel Aviv University's Department of Chemistry is now developing the next generation of antibiotics designed to overcome this kind of bacteria. And the key, he says, is in the bacteria itself.

“We took the mechanism of bacterial resistance and used this mechanism itself to generate antibiotics,” explains Dr. Fridman. “It's thanks to these bacteria that we can develop a better medication.” Conducted in collaboration with Prof. Sylvie Garneau-Tsodikova from the University of Michigan at Ann Arbor, Dr. Fridman's research was highlighted recently in the journal ChemBioChem.

Fighting from within

According to Dr. Fridman, certain bacterial strains include enzymes which help the bacteria to inactivate antibiotics. When the enzymes meet with these antibiotics, they chemically alter the drug, making the antibiotic ineffective and unable to recognize its target.

Turning this powerful mechanism against the bacteria itself, the team isolated the antibiotic-inactivating enzymes from the bacteria, then integrated them into the drugs. With this alteration, the modified antibiotics proved to be effective against typically resistant bacterial strains.

At the heart of this development, says Dr. Fridman, was the chemical modification of the parent drug. Once the researchers identified how the bacteria incapacitated the antibiotics, they were able to create a drug that could block bacterial resistance while maintaining the integrity of the antibiotic.

Killing bacteria, saving lives

These new antibiotics will be a vast improvement on today's drugs, says Dr. Fridman. When fully developed, they could be used to treat infections that are now considered difficult if not impossible to treat with current antibiotics.

Dr. Fridman says that, while the new antibiotics are a few years away from the marketplace, the ability to beat bacterial resistance will be invaluable for the future of health care.

Media Contact

George Hunka EurekAlert!

More Information:

http://www.aftau.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors