Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean heat content reveals secrets of fish migration behaviors

22.10.2015

Study uses hurricane forecasting tool to show fishes affinity for ocean fronts and eddies

Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science developed a new method to estimate fish movements using ocean heat content images, a dataset commonly used in hurricane intensity forecasting.


This image shows front and eddy utilization in the Gulf of Mexico by pelagic fishes revealed by ocean heat content: (a) a yellowfin tuna (Thunnus albacares); and, (b) an Atlantic sailfish. OHC maps are based on calculating thermal energy from the depths of the 20°C isotherm.

Credit: Jiangang Luo, UM Rosenstiel School of Marine and Atmospheric Science

With Atlantic tarpon as the messenger, this is the first study to quantitatively show that large migratory fishes, such as yellowfin and bluefin tunas, blue and white marlin, and sailfish have affinities for ocean fronts and eddies.

"Ocean heat content data revealed detailed movements of fishes that were not readily apparent using surface temperature data," said Jerald S. Ault, UM Rosenstiel School professor of marine biology and ecology. "This offers a powerful new approach to study how fish interact with dynamic water features relatively common in the ocean."

Ocean heat content (OHC) relative to the 26°C isotherm, a measure of heat stored in the upper surface layers of the ocean, has been used for more than four decades by scientists to help predict hurricane intensity. Over the past two decades, OHC has been monitored daily using satellite fields and in-situ data that provide basin-scale variability for both weather and climate studies.

In addition to providing the OHC for forecasting, these previous studies showed OHC images reveal dynamic ocean features, such as fronts and eddies, in the ocean better than just using standard techniques (e.g., sea surface temperature), especially during the summer months.

The researchers compared data on fish movements obtained from pop-up satellite tags affixed to the highly migratory fish alongside maps of the heat stored in the upper ocean. "Using an advanced optimization algorithm and OHC maps, we developed a method to greatly improve geolocation accuracy and refine fish movement tracks derived from satellite tags," said Jiangang Luo, lead author and UM scientist at the Tarpon and Bonefish Research Center. The analysis revealed that fish commonly swim along the boundaries of water features in the ocean, such as fronts, like the Florida and Loop Current and their complex eddy fields.

"Using the OHC approach in a new way offers an unprecedented view of how these animals move with currents and eddies in the ocean," said Nick Shay, UM Rosenstiel School professor of ocean sciences. "Our study provides a more detailed picture of the ocean ecosystem as an entity."

In one 109-day analysis, the researchers documented a yellowfin tuna move along a weak front off the Mississippi River before reaching an eddy centered in the Gulf of Mexico. In separate analysis, a yellowfin tuna swam around the periphery of the same eddy many times over a 20-day period, rarely passing over it.

Eddies are swirling masses of water that have been shed from strong ocean current fronts, and pump nutrient-rich water to the surface. Fronts are a type of current created at a boundary between two distinct water masses with differing physical properties, such as different temperatures, salinities. In the Gulf of Mexico, warm eddies are often shed from the Loop Current in the summer months causing a rapid intensification of hurricanes (e.g., Katrina) as they pass over it.

"Our new method shows that hurricanes and highly migratory fish share at least one common oceanographic interest - warm swirling ocean eddies," said Ault.

###

The study, titled "Ocean Heat Content Reveals Secrets of Fish Migration," was published in the Oct. 20 issue of the journal PLOS ONE. The study's authors include: Jiangang Luo, Jerald S. Ault, Lynn "Nick" Shay of the UM Rosenstiel School; John P. Hoolihan from the Cooperative Institute for Marine and Atmospheric Science at the University of Miami; Eric D. Prince and Craig A. Brown from the NOAA Southeast Fisheries Science Center; and Jay R. Rooker from Texas A&M University. The work was supported by grants from the Bonefish and Tarpon Trust, the Robertson Foundation, National Science Foundation, McDaniel Charitable Foundation, The Billfish Foundation, Adopt-A-Billfish Program and the National Oceanic and Atmospheric Administration (NOAA).

The study can be accessed on line here:

http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0141101&representation=PDF

A video of a migration can be seen at:

https://youtu.be/-AmUKikPLuc

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>