Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean heat content reveals secrets of fish migration behaviors

22.10.2015

Study uses hurricane forecasting tool to show fishes affinity for ocean fronts and eddies

Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science developed a new method to estimate fish movements using ocean heat content images, a dataset commonly used in hurricane intensity forecasting.


This image shows front and eddy utilization in the Gulf of Mexico by pelagic fishes revealed by ocean heat content: (a) a yellowfin tuna (Thunnus albacares); and, (b) an Atlantic sailfish. OHC maps are based on calculating thermal energy from the depths of the 20°C isotherm.

Credit: Jiangang Luo, UM Rosenstiel School of Marine and Atmospheric Science

With Atlantic tarpon as the messenger, this is the first study to quantitatively show that large migratory fishes, such as yellowfin and bluefin tunas, blue and white marlin, and sailfish have affinities for ocean fronts and eddies.

"Ocean heat content data revealed detailed movements of fishes that were not readily apparent using surface temperature data," said Jerald S. Ault, UM Rosenstiel School professor of marine biology and ecology. "This offers a powerful new approach to study how fish interact with dynamic water features relatively common in the ocean."

Ocean heat content (OHC) relative to the 26°C isotherm, a measure of heat stored in the upper surface layers of the ocean, has been used for more than four decades by scientists to help predict hurricane intensity. Over the past two decades, OHC has been monitored daily using satellite fields and in-situ data that provide basin-scale variability for both weather and climate studies.

In addition to providing the OHC for forecasting, these previous studies showed OHC images reveal dynamic ocean features, such as fronts and eddies, in the ocean better than just using standard techniques (e.g., sea surface temperature), especially during the summer months.

The researchers compared data on fish movements obtained from pop-up satellite tags affixed to the highly migratory fish alongside maps of the heat stored in the upper ocean. "Using an advanced optimization algorithm and OHC maps, we developed a method to greatly improve geolocation accuracy and refine fish movement tracks derived from satellite tags," said Jiangang Luo, lead author and UM scientist at the Tarpon and Bonefish Research Center. The analysis revealed that fish commonly swim along the boundaries of water features in the ocean, such as fronts, like the Florida and Loop Current and their complex eddy fields.

"Using the OHC approach in a new way offers an unprecedented view of how these animals move with currents and eddies in the ocean," said Nick Shay, UM Rosenstiel School professor of ocean sciences. "Our study provides a more detailed picture of the ocean ecosystem as an entity."

In one 109-day analysis, the researchers documented a yellowfin tuna move along a weak front off the Mississippi River before reaching an eddy centered in the Gulf of Mexico. In separate analysis, a yellowfin tuna swam around the periphery of the same eddy many times over a 20-day period, rarely passing over it.

Eddies are swirling masses of water that have been shed from strong ocean current fronts, and pump nutrient-rich water to the surface. Fronts are a type of current created at a boundary between two distinct water masses with differing physical properties, such as different temperatures, salinities. In the Gulf of Mexico, warm eddies are often shed from the Loop Current in the summer months causing a rapid intensification of hurricanes (e.g., Katrina) as they pass over it.

"Our new method shows that hurricanes and highly migratory fish share at least one common oceanographic interest - warm swirling ocean eddies," said Ault.

###

The study, titled "Ocean Heat Content Reveals Secrets of Fish Migration," was published in the Oct. 20 issue of the journal PLOS ONE. The study's authors include: Jiangang Luo, Jerald S. Ault, Lynn "Nick" Shay of the UM Rosenstiel School; John P. Hoolihan from the Cooperative Institute for Marine and Atmospheric Science at the University of Miami; Eric D. Prince and Craig A. Brown from the NOAA Southeast Fisheries Science Center; and Jay R. Rooker from Texas A&M University. The work was supported by grants from the Bonefish and Tarpon Trust, the Robertson Foundation, National Science Foundation, McDaniel Charitable Foundation, The Billfish Foundation, Adopt-A-Billfish Program and the National Oceanic and Atmospheric Administration (NOAA).

The study can be accessed on line here:

http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0141101&representation=PDF

A video of a migration can be seen at:

https://youtu.be/-AmUKikPLuc

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>