Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered bacteria as potential source of medicine

30.01.2014
A bacteria genus living in marine sponges produces so many natural substances that scientists are classifying it as a potent source for new drugs. The bacteria are presented in the journal “Nature”. Würzburg researchers were involved in describing them.

Many medications that are used to treat cancer or infectious diseases, for example, contain substances derived from bacteria and other microorganisms. Marine sponges play an important role in the search for new drugs from the natural environment. This is because they contain exceptionally diverse and unusual natural substances.


The marine sponge Theonella swinhoei resembles a smooth stone with openings on top. (Photo: Junichi Tanaka, University of the Ryukyus, Japan)

Image amended from: Hentschel et al (2012), Nature Reviews Microbiology

Now an international venture coordinated by Professor Jörn Piel from the Swiss Federal Institute of Technology in Zurich (ETH Zurich) has broken new ground in this area. The scientists have discovered the origin of the many interesting substances found in the sponge Theonella swinhoei: they are produced by the bacteria genus Entotheonella, which lives in the sponge as a kind of lodger.

Tectomicrobia as a new bacteria group

Since the newly discovered bacterium is so unusual, the researchers were unable to assign it to a known group in the conventional system. They are therefore proposing a new strain (phylum), which they are calling Tectomicrobia.

The name Tectomicrobia is derived from the Latin word “tegere”, which means “to hide, to protect”. This term was chosen because the bacteria cannot be cultivated in the laboratory yet and are therefore “well hidden” from science. Furthermore, they presumably protect their host sponges, with the many substances they contain, from fish and other predators.

Habitat in sponges and sea water

Würzburg’s Professor Ute Hentschel-Humeida, expert in the microbiology of marine sponges, and her colleagues Dr. Susanne Schmitt and Christine Gernert were involved in describing the new bacteria. The Würzburg team also conducted studies into the distribution of the new strain. “Tectobacteria can be found in many other sponges, and also in sea water,” says Hentschel-Humeida, which points to their ecological relevance.

Making the chemical arsenal available

As their next step, the research teams are keen to discover what functions tectobacteria perform in symbiosis with their host sponge as well as in the coral reef ecosystem. They will also strive to make the bacteria’s chemical arsenal available for research and for possible biotechnological applications.

“An environmental bacterial taxon with a large and distinct metabolic repertoire”, Micheal C. Wilson, Tetsushi Mori, Christian Rückert, Agustinus R. Uria, Maximilian J. Helf, Kentaro Takada, Christine Gernert, Ursula A. E. Steffens, Nina Heycke, Susanne Schmitt, Christian Rinke, Eric J. N. Helfrich, Alexander O. Brachmann, Cristian Gurgui, Toshiyuki Wakimoto, Matthias Kracht, Max Crüsemann, Ute Hentschel, Ikuro Abe, Shigeki Matsunaga, Jörn Kalinowski, Haruko Takeyama & Jörn Piel, Nature, January 29, 2014, DOI: 10.1038/nature12959

Contact

Prof. Dr. Jörn Piel, Institute of Microbiology, ETH Zurich, Switzerland, T +41 44 633 07 55; e-mail: jpiel@ethz.ch

Prof. Dr. Ute Hentschel-Humeida, Department of Botany II, Julius-von-Sachs-Institute for Biosciences, T +49 (0)931 31-82581, e-mail: ute.hentschel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>