Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered bacteria as potential source of medicine

30.01.2014
A bacteria genus living in marine sponges produces so many natural substances that scientists are classifying it as a potent source for new drugs. The bacteria are presented in the journal “Nature”. Würzburg researchers were involved in describing them.

Many medications that are used to treat cancer or infectious diseases, for example, contain substances derived from bacteria and other microorganisms. Marine sponges play an important role in the search for new drugs from the natural environment. This is because they contain exceptionally diverse and unusual natural substances.


The marine sponge Theonella swinhoei resembles a smooth stone with openings on top. (Photo: Junichi Tanaka, University of the Ryukyus, Japan)

Image amended from: Hentschel et al (2012), Nature Reviews Microbiology

Now an international venture coordinated by Professor Jörn Piel from the Swiss Federal Institute of Technology in Zurich (ETH Zurich) has broken new ground in this area. The scientists have discovered the origin of the many interesting substances found in the sponge Theonella swinhoei: they are produced by the bacteria genus Entotheonella, which lives in the sponge as a kind of lodger.

Tectomicrobia as a new bacteria group

Since the newly discovered bacterium is so unusual, the researchers were unable to assign it to a known group in the conventional system. They are therefore proposing a new strain (phylum), which they are calling Tectomicrobia.

The name Tectomicrobia is derived from the Latin word “tegere”, which means “to hide, to protect”. This term was chosen because the bacteria cannot be cultivated in the laboratory yet and are therefore “well hidden” from science. Furthermore, they presumably protect their host sponges, with the many substances they contain, from fish and other predators.

Habitat in sponges and sea water

Würzburg’s Professor Ute Hentschel-Humeida, expert in the microbiology of marine sponges, and her colleagues Dr. Susanne Schmitt and Christine Gernert were involved in describing the new bacteria. The Würzburg team also conducted studies into the distribution of the new strain. “Tectobacteria can be found in many other sponges, and also in sea water,” says Hentschel-Humeida, which points to their ecological relevance.

Making the chemical arsenal available

As their next step, the research teams are keen to discover what functions tectobacteria perform in symbiosis with their host sponge as well as in the coral reef ecosystem. They will also strive to make the bacteria’s chemical arsenal available for research and for possible biotechnological applications.

“An environmental bacterial taxon with a large and distinct metabolic repertoire”, Micheal C. Wilson, Tetsushi Mori, Christian Rückert, Agustinus R. Uria, Maximilian J. Helf, Kentaro Takada, Christine Gernert, Ursula A. E. Steffens, Nina Heycke, Susanne Schmitt, Christian Rinke, Eric J. N. Helfrich, Alexander O. Brachmann, Cristian Gurgui, Toshiyuki Wakimoto, Matthias Kracht, Max Crüsemann, Ute Hentschel, Ikuro Abe, Shigeki Matsunaga, Jörn Kalinowski, Haruko Takeyama & Jörn Piel, Nature, January 29, 2014, DOI: 10.1038/nature12959

Contact

Prof. Dr. Jörn Piel, Institute of Microbiology, ETH Zurich, Switzerland, T +41 44 633 07 55; e-mail: jpiel@ethz.ch

Prof. Dr. Ute Hentschel-Humeida, Department of Botany II, Julius-von-Sachs-Institute for Biosciences, T +49 (0)931 31-82581, e-mail: ute.hentschel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>