Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3D test system for breast cancer radiosensitizing drugs

23.06.2015

Radiation therapy is an important part of breast cancer treatment. Sometimes, however, tumor cells become increasingly resistant to radiation damage. Now, scientists of Helmholtz Zentrum München have developed a 3D microtissue-based screening system which, for the first time, enables them to test which chemotherapeutic drugs can resensitize breast cancer cells to radiation.

The team of researchers led by Dr. Nataša Anastasov, head of the research group ‘Personalized Radiation Therapy’ at the Institute of Radiation Biology, created multicellular three-dimensional spheroids containing a mix of breast cancer cells and connective tissue cells.


Picture: Hanging Drop System for the production of 3D micro tissue

Source: InSphero AG (2014)

As Anastasov explained, “In conventional cell culture, cell growth is two dimensional, which does not adequately reproduce the characteristics of a tumor in the living organism.” Using the new screening system, the scientists can treat the cancer cells both with various chemical compounds and with radiation to determine the effects – and that in 3D.

In their study the researchers collaborated closely with the ‘Assay Development and Screening Platform’ at Helmholtz Zentrum München and the Munich-based Sirion Biotech GmbH and the Swiss InSphero AG.

The trick: fluorescent cells in hanging drops

“In our system, up to 96 wells containing microtissue spheroids can be simultaneously monitored by a computer,” said co-author Dr. Ines Höfig, explaining the fundamental principle. “For this purpose, the 3D-microtissue spheroids were grown in a hanging drop culture on the underside of a special perforated plate. After a few days, these were transferred onto an assay plate.”

Her colleague Vanja Radulović added: “Because the breast tumor cells and the connective tissue cells have been labeled with different fluorescent markers, they fluoresce in different colors. A software program can thus capture precisely how each of the spheroids reacts to the treatment.”

To confirm their method, the scientists tested the properties of several drugs which are already used in tumor therapy. The drug vinblastine proved to be the most effective in combination with radiation. In the future, the researchers plan to expand their system by adding other components of the tumor environment such as stromal or immune cells in order to optimally simulate the situation in the patient.

Prof. Dr. Michael Atkinson, director of the Institute of Radiation Biology, views the findings of his colleagues with optimism: “For the first time a convenient 3D test for high throughput screening is available with which new drug compounds developed to resensitize tumor cells to radiation treatment can be tested. This will speed up future initiatives for drug development and will also enable the screening of established drugs in combination with radiation.”


Further Information

Background:
The rapid evolution of resistance to both conventional and small molecule therapies is a challenging problem in oncology. One approach to overcome resistance is to use combinatorial treatments that exploit their synergies. The combination of chemotherapy and radiation treatment is a potentially effective combinatorial procedure, although the optimal mix has not been identified. A major drawback in identifying potentially radiation-sensitizing active agents is the lack of high throughput screening (HTS) vehicles. These are needed to replace conventional clonogenic survival assays of radiation treatment as these are too time consuming to operate in a first-pass screening mode. Moreover, there are growing concerns that monolayer and monotypic cellular screening assays may not effectively reproduce the response of a three-dimensional solid tumor to pharmacological compounds.

Original Publication:
Anastasov, N. et al. (2015). A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment, BMC Cancer, DOI: 10.1186/s12885-015-1481-9

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The research of the Institute of Radiation Biology (ISB) focuses on understanding the effects of low dose radiation exposure and on studies to increase the effectiveness and specificity of tumor radiotherapy. The research program is carried out by four interlinked research groups. The ISB is part of the Department of Radiation Sciences (DRS).

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89-3187-3324 - Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Nataša Anastasov, Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-3798 - Fax: +49-(0)89-3187-3378 - E-Mail: natasa.anastasov@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/index.html - Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/isb/index.html - Website Institute of Radiation Biology
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Press Releases of the Helmholtz Zentrum München

Helmholtz Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>