Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Replace Needle and Thread

28.04.2014

 

Wound closure and organ repair with nanoparticle solutions

Stopping bleeding, closing wounds, repairing organs—these are everyday challenges in medical and surgical practice. In the journal Angewandte Chemie, French researchers have now introduced a new method that employs gluing by aqueous nanoparticle solutions to effectively control bleeding and repair tissues. In animal tests, their approach proved easy to apply, rapid and efficient even in situations when conventional methods are traumatic or fail.

Sutures and staples are efficient tools for use in surgery and treating wounds. However, the usefulness of these methods can be limited in inaccessible parts of the body or in minimally invasive surgeries. In addition, stitching damages soft tissues such as liver, spleen, kidney, or lung.

A good adhesive could be a useful alternative. The problem is that the adhesion must take place in a wet environment and that the repaired area is immediately put under strain. Previous adhesive technologies have had problems, including insufficient strength, inflammation due to toxic substances, or complicated implementation because a chemical polymerization or cross-linking reaction must be carried out in a controlled manner.

A team headed by Ludwik Leibler at the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur at the Laboratoire Recherche Vasculaire Translationnelle (INSERM/Université Paris Diderot) has now successfully tested a completely novel approach for adhering living tissue: they simply apply droplets of a nanoparticle solution to the wound and press it closed for about a minute.

The principle behind is stunningly simple: the nanoparticles spread out across the surface and bind to the tissue’s molecular network by attracting interactions. Because there are a very large number of nanoparticles present, millions of bonds firmly bind the two surfaces together. No chemical reaction is needed. The researchers used silicon dioxide and iron oxide nanoparticles for their experiments.

In contrast to conventional wound adhesives, this results in no artificial barrier; it produces direct contact between the two edges of the wound. Because the nanoparticles are so small, they do not appreciably impact the wound healing process. Applied to deep skin wounds the method is easily usable and leads to remarkably aesthetic healing. In addition, it is possible to correct the positioning of the tissue edges relative to each other without opening the wound closure.

Aqueous solutions of nanoparticles have been also shown to be able to repair rapidly and efficiently in hemorrhagic conditions liver wounds for which sutures are traumatic and not practical. Either a wound was closed and wound edges were glued by nanoparticles or, in the case of liver resections, bleeding was quickly stopped by gluing a polymer strip using a nanoparticle solution.

In addition, the researchers were able to attach a biodegradable membrane to a beating rat heart. This opens new perspectives: it may be possible to attach medical devices for delivering drugs, supporting damaged tissue, as well as matrices for tissue growth.

About the Author

Dr. Ludwik Leibler is Research Director at Centre National de la Recherche Scientifique (CNRS) and director of Soft Matter and Chemistry laboratory at Ecole Supérieure de Physique et Chimie Industrielle (ESPCI ParisTech) in Paris, France and is working in the area of physics and chemistry of materials. He has received awards from various organizations including American Physical Society, American Chemical Society, French Academy of Sciences, French Chemical Society, and CNRS. He is a Foreign Associate of National Academy of Engineering (USA), of Die Nordrhein-Westfälische Akademie der Wissenschaften und der Künste, and a member of Academia Europaea.

Author: Ludwik Leibler, ESPCI ParisTech (France), http://www.espci.fr/en/directory?recherche=Ludwik%09Leibler&r_en_cours=on&type=recherche&unique_id=CgRcAjAeBDw%3D&lang=en

Title: Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201401043

|
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>