Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Replace Needle and Thread

28.04.2014

 

Wound closure and organ repair with nanoparticle solutions

Stopping bleeding, closing wounds, repairing organs—these are everyday challenges in medical and surgical practice. In the journal Angewandte Chemie, French researchers have now introduced a new method that employs gluing by aqueous nanoparticle solutions to effectively control bleeding and repair tissues. In animal tests, their approach proved easy to apply, rapid and efficient even in situations when conventional methods are traumatic or fail.

Sutures and staples are efficient tools for use in surgery and treating wounds. However, the usefulness of these methods can be limited in inaccessible parts of the body or in minimally invasive surgeries. In addition, stitching damages soft tissues such as liver, spleen, kidney, or lung.

A good adhesive could be a useful alternative. The problem is that the adhesion must take place in a wet environment and that the repaired area is immediately put under strain. Previous adhesive technologies have had problems, including insufficient strength, inflammation due to toxic substances, or complicated implementation because a chemical polymerization or cross-linking reaction must be carried out in a controlled manner.

A team headed by Ludwik Leibler at the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur at the Laboratoire Recherche Vasculaire Translationnelle (INSERM/Université Paris Diderot) has now successfully tested a completely novel approach for adhering living tissue: they simply apply droplets of a nanoparticle solution to the wound and press it closed for about a minute.

The principle behind is stunningly simple: the nanoparticles spread out across the surface and bind to the tissue’s molecular network by attracting interactions. Because there are a very large number of nanoparticles present, millions of bonds firmly bind the two surfaces together. No chemical reaction is needed. The researchers used silicon dioxide and iron oxide nanoparticles for their experiments.

In contrast to conventional wound adhesives, this results in no artificial barrier; it produces direct contact between the two edges of the wound. Because the nanoparticles are so small, they do not appreciably impact the wound healing process. Applied to deep skin wounds the method is easily usable and leads to remarkably aesthetic healing. In addition, it is possible to correct the positioning of the tissue edges relative to each other without opening the wound closure.

Aqueous solutions of nanoparticles have been also shown to be able to repair rapidly and efficiently in hemorrhagic conditions liver wounds for which sutures are traumatic and not practical. Either a wound was closed and wound edges were glued by nanoparticles or, in the case of liver resections, bleeding was quickly stopped by gluing a polymer strip using a nanoparticle solution.

In addition, the researchers were able to attach a biodegradable membrane to a beating rat heart. This opens new perspectives: it may be possible to attach medical devices for delivering drugs, supporting damaged tissue, as well as matrices for tissue growth.

About the Author

Dr. Ludwik Leibler is Research Director at Centre National de la Recherche Scientifique (CNRS) and director of Soft Matter and Chemistry laboratory at Ecole Supérieure de Physique et Chimie Industrielle (ESPCI ParisTech) in Paris, France and is working in the area of physics and chemistry of materials. He has received awards from various organizations including American Physical Society, American Chemical Society, French Academy of Sciences, French Chemical Society, and CNRS. He is a Foreign Associate of National Academy of Engineering (USA), of Die Nordrhein-Westfälische Akademie der Wissenschaften und der Künste, and a member of Academia Europaea.

Author: Ludwik Leibler, ESPCI ParisTech (France), http://www.espci.fr/en/directory?recherche=Ludwik%09Leibler&r_en_cours=on&type=recherche&unique_id=CgRcAjAeBDw%3D&lang=en

Title: Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201401043

|
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>