Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation in gene associated with rare eye disease also contributes to bladder cancer growth

02.11.2011
Research conducted by Dr. Jayne S. Weiss, Professor and Chair of Ophthalmology at LSU Health Sciences Center New Orleans, and colleagues has found that a defect in a gene involved in a rare disease of the cornea also contributes to the progression of invasive bladder cancer. The findings are published in the November 2011 issue of the peer-reviewed journal, DNA and Cell Biology. It is the featured research of the issue, selected for the cover.

Because earlier studies, including Dr. Weiss', showed a protein called TERE1 or UBIAD1 is associated with an eye disease involving excess cholesterol as well as invasive prostate cancer, the team investigated its role in both lipid metabolism and the progression of invasive bladder cancer.

TERE1 interacts with a cholesterol carrier protein and Dr. Weiss' earlier research found a TERE1 mutation in Schnyder's corneal dystrophy, a rare disease characterized by abnormal deposits of cholesterol and other lipids, or fats, in the cornea leading to progressive loss of vision. An elevated level of cholesterol in cells has also been implicated in the development and progression of breast, colon, liver, head and neck, and melanoma cancers.

The objectives of this study were to confirm that TERE1 levels are reduced in advanced bladder cancer and that TERE1 inhibits the growth of bladder cancer cells. The researchers manipulated the proteins thought to control cell stress, growth signaling, and how cholesterol and other fats are handled in cells and tested them in human bladder cancer cells in a mouse model. They found that TERE1 was reduced in a third of the invasive specimens and that when added to cells, TERE1 dramatically inhibited the development of tumors. They also showed that altering the dosage of TERE1 and another protein implicated in disease associated with triglyceride metabolism, called TBL2, regulates cholesterol in cells and that mutations in TERE1 associated with Schnyder's corneal dystrophy can interfere with binding to a carrier protein that removes cholesterol from cells.

"Research like this helps us target new treatment or prevention approaches for many seemingly unrelated diseases," notes Dr. Jayne Weiss, who also holds the Herbert E. Kaufman, MD Endowed Chair in Ophthalmology at LSU Health Sciences Center New Orleans and is Director of the LSU Eye Center. "Discovering a new component of the dynamic cellular cholesterol regulatory network gives us information that can be applied to every disease arising from a defect in it. Besides Schnyder's corneal dystrophy, this includes many types of cancer."

According to the American Cancer Society, bladder cancer is the fourth leading non-skin cancer in American men, with 52,020 of the 69,250 new cases expected to be diagnosed in men this year. Deaths are estimated at 14,990. Among patients with invasive or advanced disease, therapy consists of radical surgery and/or chemotherapy, which can achieve an overall 5-year survival rate of barely 50%. Those patients with advanced disease have a less than 10% sustained complete response from chemotherapy.

The research team included scientists from the University of Pennsylvania School of Medicine, Kirksville Osteopathic Medical School, Veterans Affairs Medical Center Philadelphia, Gloucester County College, National Cancer Institute, National Heart, Lung, and Blood Institute, and Leibniz Institute of Plan Biochemistry. The research was funded by the Veterans Affairs Medical Center Philadelphia, the Innisfree Foundation of Bryn Mawr, and the Castleman Family Fund.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC comprises a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, and Schools of Allied Health Professions, Nursing, and Graduate Studies. LSUHSC faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSUHSC research enterprise generates jobs and enormous economic impact, LSUHSC faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>