Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Well-Known Molecule May be Behind Alcohol’s Benefits to Heart Health

Raise a Glass – Moderate Consumption is Key – to the Molecule ‘Notch’

Many studies support the assertion that moderate drinking is beneficial when it comes to cardiovascular health, and for the first time scientists have discovered that a well-known molecule, called Notch, may be behind alcohol’s protective effects. Down the road, this finding could help scientists create a new treatment for heart disease that mimics the beneficial influence of modest alcohol consumption.

“Any understanding of a socially acceptable, modifiable activity that many people engage in, like drinking, is useful as we continue to search for new ways to improve health,” said Eileen M. Redmond, Ph.D., lead study author and associate professor in the Department of Surgery, Basic and Translational Research Division, at the University of Rochester Medical Center. “If we can figure out at the basic science level how alcohol is beneficial it wouldn’t translate to doctors prescribing people to drink, but hopefully will lead to the development of a new therapy for the millions of people with coronary heart disease.”

Population studies looking at patterns of health and illness and associated factors have shown that heart disease and cardiac-related death is 20 to 40 percent lower in light to moderate drinkers, compared to people who don’t drink. Redmond notes that even if the reduction is only 20 percent, that still translates to a considerable benefit that warrants further investigation to better understand how alcohol works its protective magic.

In the study, published in Arteriosclerosis, Thrombosis and Vascular Biology, scientists found that alcohol at moderate levels of consumption – generally considered one to three drinks per day – inhibits Notch, and subsequently prevents the buildup of smooth muscle cells in blood vessels, which contributes to narrowing of the arteries and can lead to a heart attack or stroke.

In trying to uncover the molecular players involved when it comes to alcohol and improved cardiovascular health, Redmond and her team focused in on Notch because research has shown it influences the fate – growth, migration or death – of vascular smooth muscle cells. In blood vessels, the growth and movement of smooth muscle cells plays a key role in the development of atherosclerosis, the hardening and narrowing of arteries, and in restenosis, the re-narrowing of arteries after they have been treated to remove buildups of plaque: Both are risk factors for heart attack and stroke.

The team studied the effects of moderate amounts of alcohol in human coronary artery smooth muscle cells and in the carotid arteries of mice. In both scenarios, regular, limited amounts of alcohol decreased Notch, which in turn decreased the production and growth of smooth muscle cells, leaving vessels open and relatively free of blockages or build-up – a desirable state for a healthy heart.

Specifically, in human smooth muscle cells, treatment with moderate levels of alcohol significantly decreased the expression of the Notch 1 receptor and inhibited Notch signaling, leading to decreased growth of smooth muscle cells. The inhibitory effect of moderate alcohol on smooth muscle cell growth was reversed if the Notch pathway was artificially switched on in these cells.

In a mouse model of vessel remodeling, daily feeding of alcohol – equivalent to two drinks per day, adjusted for body weight – inhibited Notch in the vessel wall and markedly reduced vessel thickening, compared to the control, no alcohol group. Vessel remodeling occurs when vessels change shape and thickness in response to different injurious stimuli.

“At the molecular level, this is the first time anyone has linked the benefits of moderate drinking on cardiovascular disease with Notch,” said David Morrow, Ph.D., an instructor in the Department of Surgery at the Medical Center, first author of the study and an expert on Notch. “Now that we’ve identified Notch as a cell signaling pathway regulated by alcohol, we’re going to delve deeper into the nuts and bolts of the process to try to find out exactly how alcohol inhibits Notch in smooth muscle cells.”

Researchers admit that uncovering how alcohol inhibits Notch signaling in these cells will not be an easy task. According to Redmond, “The Notch pathway is complex, and there are multiple potential regulatory points which could be affected by alcohol.”

In addition to Redmond and Morrow, co-authors on the study include John P. Cullen, Ph.D., and Weimin Liu, M.D., Ph.D., also in the Department of Surgery, Research Division at the University of Rochester Medical Center, and Paul A. Cahill, Ph.D., at the Vascular Health Research Center, Dublin City University, Ireland. The study was funded by grants from the National Institute on Alcohol Abuse and Alcoholism at the National Institutes of Health and the American Heart Association.

For Media Inquiries:
Emily Boynton
Email Emily Boynton

Emily Boynton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>