Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-Known Molecule May be Behind Alcohol’s Benefits to Heart Health

19.11.2010
Raise a Glass – Moderate Consumption is Key – to the Molecule ‘Notch’

Many studies support the assertion that moderate drinking is beneficial when it comes to cardiovascular health, and for the first time scientists have discovered that a well-known molecule, called Notch, may be behind alcohol’s protective effects. Down the road, this finding could help scientists create a new treatment for heart disease that mimics the beneficial influence of modest alcohol consumption.

“Any understanding of a socially acceptable, modifiable activity that many people engage in, like drinking, is useful as we continue to search for new ways to improve health,” said Eileen M. Redmond, Ph.D., lead study author and associate professor in the Department of Surgery, Basic and Translational Research Division, at the University of Rochester Medical Center. “If we can figure out at the basic science level how alcohol is beneficial it wouldn’t translate to doctors prescribing people to drink, but hopefully will lead to the development of a new therapy for the millions of people with coronary heart disease.”

Population studies looking at patterns of health and illness and associated factors have shown that heart disease and cardiac-related death is 20 to 40 percent lower in light to moderate drinkers, compared to people who don’t drink. Redmond notes that even if the reduction is only 20 percent, that still translates to a considerable benefit that warrants further investigation to better understand how alcohol works its protective magic.

In the study, published in Arteriosclerosis, Thrombosis and Vascular Biology, scientists found that alcohol at moderate levels of consumption – generally considered one to three drinks per day – inhibits Notch, and subsequently prevents the buildup of smooth muscle cells in blood vessels, which contributes to narrowing of the arteries and can lead to a heart attack or stroke.

In trying to uncover the molecular players involved when it comes to alcohol and improved cardiovascular health, Redmond and her team focused in on Notch because research has shown it influences the fate – growth, migration or death – of vascular smooth muscle cells. In blood vessels, the growth and movement of smooth muscle cells plays a key role in the development of atherosclerosis, the hardening and narrowing of arteries, and in restenosis, the re-narrowing of arteries after they have been treated to remove buildups of plaque: Both are risk factors for heart attack and stroke.

The team studied the effects of moderate amounts of alcohol in human coronary artery smooth muscle cells and in the carotid arteries of mice. In both scenarios, regular, limited amounts of alcohol decreased Notch, which in turn decreased the production and growth of smooth muscle cells, leaving vessels open and relatively free of blockages or build-up – a desirable state for a healthy heart.

Specifically, in human smooth muscle cells, treatment with moderate levels of alcohol significantly decreased the expression of the Notch 1 receptor and inhibited Notch signaling, leading to decreased growth of smooth muscle cells. The inhibitory effect of moderate alcohol on smooth muscle cell growth was reversed if the Notch pathway was artificially switched on in these cells.

In a mouse model of vessel remodeling, daily feeding of alcohol – equivalent to two drinks per day, adjusted for body weight – inhibited Notch in the vessel wall and markedly reduced vessel thickening, compared to the control, no alcohol group. Vessel remodeling occurs when vessels change shape and thickness in response to different injurious stimuli.

“At the molecular level, this is the first time anyone has linked the benefits of moderate drinking on cardiovascular disease with Notch,” said David Morrow, Ph.D., an instructor in the Department of Surgery at the Medical Center, first author of the study and an expert on Notch. “Now that we’ve identified Notch as a cell signaling pathway regulated by alcohol, we’re going to delve deeper into the nuts and bolts of the process to try to find out exactly how alcohol inhibits Notch in smooth muscle cells.”

Researchers admit that uncovering how alcohol inhibits Notch signaling in these cells will not be an easy task. According to Redmond, “The Notch pathway is complex, and there are multiple potential regulatory points which could be affected by alcohol.”

In addition to Redmond and Morrow, co-authors on the study include John P. Cullen, Ph.D., and Weimin Liu, M.D., Ph.D., also in the Department of Surgery, Research Division at the University of Rochester Medical Center, and Paul A. Cahill, Ph.D., at the Vascular Health Research Center, Dublin City University, Ireland. The study was funded by grants from the National Institute on Alcohol Abuse and Alcoholism at the National Institutes of Health and the American Heart Association.

For Media Inquiries:
Emily Boynton
585-273-1757
Email Emily Boynton

Emily Boynton | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>